| 研究生: |
曹崴 Wei Tsao |
|---|---|
| 論文名稱: |
探討黑色素腫瘤中p53調控miR-524-5p及miR-596表現之機制 Study of the mechanism of p53 regulation in miR-524-5p and miR-596 expression in melanoma |
| 指導教授: |
馬念涵
NianHan Ma |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 系統生物與生物資訊研究所 Graduate Institute of Systems Biology and Bioinformatics |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 黑色素癌 、黑色素腫瘤 、微型核醣核酸 、癌症 、腫瘤蛋白53 、miR-524-5p 、miR-596 |
| 外文關鍵詞: | micro RNA, TP53, miR-596 |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
miRNA在許多癌症基因調控,都參與並且扮演著重要的角色,先前有研究指出,在mitogen-activated protein kinases pathway (MAPK pathway)過度活化的惡性黑色素腫瘤當中, miR-524-5p與miR-596這兩個miRNA的表現量異常的降低,且當重新增強這兩個miRNA的表現量之後,會抑制黑色素腫瘤的增值、爬行和侵襲等諸多細胞功能。是非常具有效力的腫瘤抑制miRNA。但是至目前為止,此二種miRNA在黑色素腫瘤細胞當中所受到的下調機制依舊是未知,找出在黑色素腫瘤當中此二種miRNA之調控機制便是此研究所要探討之主軸
p53是一個週知的腫瘤抑制蛋白,通過轉錄的調控,活化或抑制多種與癌症相關的基因轉錄,也有諸多研究顯示p53也會調控許多癌症相關miRNA的轉錄。在此研究當中,我們假設p53可能為調控miR-524-5p與miR-596這兩個miRNA的轉錄因子。在研究中我們發現,當p53的表現量在黑色素腫瘤細胞中上升時,miR-524-5p與miR-596的表現量便有隨之上升之趨勢,而p53表現受到抑制時,miR-524-5p與miR-596的表現量也有下調的趨勢,p53與這兩個miRNA之表現,是有著正相關的關聯性,且在miR-524-5p當中最為明顯,所以,為了驗證p53是否會直接調控其轉錄,我們也預測了miR-524-5p的啟動子序列,進一步發現此序列上可能有潛在p53連接位點。最後通過建立miR-524-5p的啟動子序列之冷光報導基因,試圖證明與了解p53是否直接的與miR-524-5p的啟動子序列進行連接並調控其轉錄。
miRNAs are involved in an important role in the regulation of many cancer-related genes. It has been found that the expression levels of miRNA miR-524-5p and miR-596 were significantly low in melanoma with high activated mitogen-activated protein kinases pathway (MAPK pathway). When the expression levels of the two miRNAs are overexpressed, cell functions such as proliferation, migration, and invasion of melanoma tumors are repressed. However, the down-regulation mechanism of these two miRNAs in melanoma is still unclear. Therefore, the aim of this study is to identify how these two miRNAs are regulated in melanoma.
p53 is a well-known tumor suppressor protein that activates or inhibits the transcription of many cancer-associated genes through transcriptional regulation. Many studies have also shown that p53 as well regulates the transcription of many cancer-associated miRNAs. In this study, we hypothesized that p53 may be a transcription factor that regulates two miRNAs, miR-524-5p and miR-596. The increase of MAPK pathway in melanoma may cause the inhibition of p53 activity, which may result in decrease of miR-524-5p and miR-596 in melanoma.
Our results indicated that the expression levels of p53 can affect the expressions of miR-524-5p and miR-596. The expressions of p53 and the two miRNAs were positively correlated. In order to verify whether p53 is directly regulator for miR-524-5p transcription, we predicted the promoter sequence of miR-524-5p according data base or web and further cloned the potential p53 binding sites on luciferase reporter plasmid. Finally, we try to test whether or not p53 is directly binding to the promoter sequence of miR-524-5p and regulates its transcription.
1. Gray-Schopfer, V., C. Wellbrock, and R. Marais, Melanoma biology and new targeted therapy. Nature, 2007. 445(7130): p. 851-7.
2. Slominski, A., et al., Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev, 2004. 84(4): p. 1155-228.
3. Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86.
4. Kraemer, K.H., et al., The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm. Arch Dermatol, 1994. 130(8): p. 1018-21.
5. Greene, M.H., et al., High risk of malignant melanoma in melanoma-prone families with dysplastic nevi. Ann Intern Med, 1985. 102(4): p. 458-65.
6. Cummins, D.L., et al., Cutaneous malignant melanoma. Mayo Clin Proc, 2006. 81(4): p. 500-7.
7. Domingues, B., et al., Melanoma treatment in review. Immunotargets Ther, 2018. 7: p. 35-49.
8. Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949-54.
9. Yao, Z., et al., BRAF Mutants Evade ERK-Dependent Feedback by Different Mechanisms that Determine Their Sensitivity to Pharmacologic Inhibition. Cancer Cell, 2015. 28(3): p. 370-83.
10. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-54.
11. Rodriguez, A., et al., Identification of mammalian microRNA host genes and transcription units. Genome Res, 2004. 14(10a): p. 1902-10.
12. Cai, X., C.H. Hagedorn, and B.R. Cullen, Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna, 2004. 10(12): p. 1957-66.
13. Han, J., et al., The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev, 2004. 18(24): p. 3016-27.
14. Iorio, M.V. and C.M. Croce, Causes and consequences of microRNA dysregulation. Cancer J, 2012. 18(3): p. 215-22.
15. Hutvagner, G., et al., A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 2001. 293(5531): p. 834-8.
16. MacRae, I.J., et al., In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci U S A, 2008. 105(2): p. 512-7.
17. Wahid, F., et al., MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta, 2010. 1803(11): p. 1231-43.
18. Bartel, D.P., MicroRNAs: target recognition and regulatory functions. Cell, 2009. 136(2): p. 215-33.
19. Calin, G.A., et al., Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 2004. 101(9): p. 2999-3004.
20. Johnson, S.M., et al., RAS is regulated by the let-7 microRNA family. Cell, 2005. 120(5): p. 635-47.
21. Legesse-Miller, A., et al., let-7 Overexpression leads to an increased fraction of cells in G2/M, direct down-regulation of Cdc34, and stabilization of Wee1 kinase in primary fibroblasts. J Biol Chem, 2009. 284(11): p. 6605-9.
22. Diepenbruck, M., et al., miR-1199-5p and Zeb1 function in a double-negative feedback loop potentially coordinating EMT and tumour metastasis. 2017. 8(1): p. 1168.
23. Jiang, X. and X. Wang, Cytochrome C-mediated apoptosis. Annu Rev Biochem, 2004. 73: p. 87-106.
24. Calin, G.A., et al., MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A, 2008. 105(13): p. 5166-71.
25. Macfarlane, L.A. and P.R. Murphy, MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics, 2010. 11(7): p. 537-61.
26. Liu, S.M., et al., miR-524-5p suppresses the growth of oncogenic BRAF melanoma by targeting BRAF and ERK2. Oncotarget, 2014. 5(19): p. 9444-59.
27. Liu, S.M., et al., miR-596 Modulates Melanoma Growth by Regulating Cell Survival and Death. J Invest Dermatol, 2018. 138(4): p. 911-921.
28. Royds, J.A. and B. Iacopetta, p53 and disease: when the guardian angel fails. Cell Death Differ, 2006. 13(6): p. 1017-26.
29. Vousden, K.H. and D.P. Lane, p53 in health and disease. Nat Rev Mol Cell Biol, 2007. 8(4): p. 275-83.
30. Brugarolas, J., et al., Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature, 1995. 377(6549): p. 552-7.
31. Brown, J.P., W. Wei, and J.M. Sedivy, Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science, 1997. 277(5327): p. 831-4.
32. Crighton, D., et al., DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 2006. 126(1): p. 121-34.
33. Zhao, Y., et al., Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 Inhibitors) in clinical trials for cancer treatment. J Med Chem, 2015. 58(3): p. 1038-52.
34. Riley, T., et al., Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol, 2008. 9(5): p. 402-12.
35. Zilfou, J.T. and S.W. Lowe, Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol, 2009. 1(5): p. a001883.
36. Malmlof, M., et al., MEK-ERK-mediated phosphorylation of MDM2 at Ser-166 in hepatocytes. MDM2 is activated in response to inhibited Akt signaling. J Biol Chem, 2007. 282(4): p. 2288-96.
37. Laudato, S., et al., P53-induced miR-30e-5p inhibits colorectal cancer invasion and metastasis by targeting ITGA6 and ITGB1. 2017. 141(9): p. 1879-1890.
38. Tazawa, H., et al., Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A, 2007. 104(39): p. 15472-7.
39. Raver-Shapira, N., et al., Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell, 2007. 26(5): p. 731-43.
40. Sachdeva, M., et al., p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A, 2009. 106(9): p. 3207-12.
41. Yamakuchi, M., et al., P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A, 2010. 107(14): p. 6334-9.
42. Georges, S.A., et al., Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer Res, 2008. 68(24): p. 10105-12.
43. Lane, D.P., Cancer. p53, guardian of the genome. Nature, 1992. 358(6381): p. 15-6.
44. Yang, H., et al., RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res, 2010. 70(13): p. 5518-27.
45. Joseph, E.W., et al., The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci U S A, 2010. 107(33): p. 14903-8.
46. Shi, H., et al., Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov, 2014. 4(1): p. 80-93.
47. Chen, L., et al., The putative tumor suppressor miR-524-5p directly targets Jagged-1 and Hes-1 in glioma. Carcinogenesis, 2012. 33(11): p. 2276-82.
48. Liu, G.H., et al., MicroRNA-524-5p suppresses the growth and invasive abilities of gastric cancer cells. Oncol Lett, 2016. 11(3): p. 1926-1932.