跳到主要內容

簡易檢索 / 詳目顯示

研究生: 余曉倫
Hsiao-Lun Yu
論文名稱: 探討以兩水相系統提昇Clostridium butyricum產氫之研究
指導教授: 徐敬衡
Chin-Hung Shu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 62
中文關鍵詞: 兩水相系統氫氣
外文關鍵詞: clostridium butyricum, aqueous tow-phase system, hydrogen
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用生物法產氫。Clostridium 是目前研究產氫的主要菌
    株之一,本實驗所使用的Clostridium butyricum 在生長過程中,主要
    的代謝酸有丁酸、醋酸,隨著丁、醋酸濃度的增加會有抑制菌體生長
    的情形。本實驗欲利用常見的兩水相系統,探討以polyethylene
    glycol(PEG)、Dextran(DEX)組成之兩水相系統,對於不同的物質有不
    同的分配率的特徵,來減少或延緩代謝酸的抑制。
    本實驗分四部分討論。第一部分是進行兩水相不同濃度組成中
    丁、醋酸及菌體的分配情形;第二部分以血清瓶實驗觀察不同的兩水
    相系統下,菌株實際的生長情形及產氫量;第三部分是利用2L 醱酵
    槽進行批次醱酵;第四部分進行連續式饋料反應,進行饋料的依據一
    般而言均是以碳源的使用情形來判斷是否進料,本實驗也是利用此原
    則進行進料的動作。分配率實驗結果顯示,無論是丁酸、醋酸的分配
    率皆大於1,且高分子濃度愈大,分配率也愈大,代謝酸都較偏好於
    PEG-rich 相,而菌體則偏好於DEX-rich 相。適當的兩水相組成不會
    抑制菌體的生長。比較有無兩水相系統的批次發酵實驗中,含有兩水
    相系統的產氫量較無兩水相系統的產氫效率(Efficiency of H2
    formation)約增加了18%。在連續式饋料(fed-batch)實驗中,含有兩水
    相系統的產氫量與無兩水相系統的產氫效率則相近,其產氫效率68%
    並無低於無兩水相系統的產氫效率67%,兩水相系統在整個醱酵(醱
    酵時間36.5 小時)產氫停止前總共進料8 次,無兩水相系統(醱酵時間
    36 小時)則進料4 次即停止產氫,含兩水相系統的連續式饋料實驗,
    氫氣產率195.6 ml/hr/L,醱酵時間內產氫量共17136 ml。兩水相系統
    有提昇Clostridium butyricum 產氫之現象。


    目錄 摘要……………………………………………………………. Ⅰ 目錄……………………………………………………………. Ⅲ 圖索引…………………………………………………………..Ⅴ 表索引………………………………………………………….Ⅶ 第一章緖論……………………………………………………1 1-1 研究動機…………………………………………………1 1-2 研究目的…………………………………………………1 第二章文獻回顧………………………………………………3 2-1 前言………………………………………………………3 2-2 微生物產氫簡介………….………………………………4 2-3 Clostridium…………………………………………………6 2-4 厭氧微生物產氫機制……………………………………8 2-5 環境因子對菌種產氫的影響……………………………14 2-6 兩水相……………………………………………………18 第三章材料與方法……………………………………………23 3-1 實驗材料…………………………………….……………23 3-1-1 微生物……………………………………………………23 3-1-2 培養基組成………………………………………………23 3-1-3 實驗藥品…………………………………………………23 3-1-4 實驗儀器與設備…………………………………………25 3-2 實驗設計與方法…………………………………….……26 3-2-1 菌種保存…………………………………………………26 3-2-2 接種菌體培養……………………………………………27 3-2-3 厭氧微生物反應器………………………………………27 3-2-4 生長曲線的測定…………………………………………28 3-2-5 氣體分析…………………………………………………28 3-2-6 葡萄糖的分析……………………………………………30 3-2-7 代謝酸的分析……………………………………………31 3-3 有機酸對Clostridium butyricum 生長的影響….……….32 3-4 不同高分子濃度組成下的丁酸、醋酸分配率…………32 3-5 PEG、DEX 對醱酵產氫的影響…………………..…...33 3-6 含兩水相系統之批次(batch) 2L 醱酵槽厭氧產氫……...34 3-7 含兩水相系統之連續式饋料(fed-batch) 2L 醱酵槽厭氧產氫….….….….….….….….….….….…...34 第四章結果與討論……………………………………………..36 4-1 有機酸對C.butyricum 生長之影響………………………36 4-2 不同高分子濃度組成下的丁酸、醋酸分配率……...…...37 4-3 ATPS 對醱酵產氫之血清瓶實驗………………………...40 4-4 ATPS 批式(batch)醱酵槽實驗.……………………..……43 4-5 ATPS 連續式饋料(fed-batch)醱酵槽實驗………….……46 第五章結論…………………………………………..………...51 參考文獻………………………………………………..………...53

    參考文獻
    白明德,“厭氧生物產氫機制與操作策略之研究”,成功大學環境工程
    學系,碩士論文,1999,台南。
    許淳鈞,“利用混合特定菌種生產氫氣之研究”,國立中央大學化學工
    程與材料工程系,碩士論文,2001。
    陳志平,“以兩水相萃取系統純化蛋白質”,化工,1995,42。
    鄭幸雄、林秋裕、李季眉、曾怡禎、劉文佐、林明瑞、林信一, “厭
    氧生物產氫機制及程序控制之技術研發概論”,工業污染防制,2001,
    Allan E.K., “Distribution and Activity of Microorganisms in Lakes;
    Effect of Physical Processes.”, Ford Y. E. eds., 1993, 47-68, Aquatic
    Microbiology., Blackwell Scientific Publications, Inc., Boston.
    Andrew J.J., “Partitioning bioreactors”, Current Opioion in
    Biotechnology, 1997, 8, 169-174.
    Baskir, J.N., Hatton, T.A., and Suter, U.W., “Protein Partitioning in
    Two-Phase Aqueous Polymer System.”, Biotechnol. Bioeng., 1989, 34,
    541-558.
    Brosseau, J.D. and Zajic, J.E., “Hydrogen gas production with
    Citrobacter intermedius and Clostridium posteurianum.”, J. chem.. Tech.
    Biotechnol., 1982, 32, 496.
    C.C. Chen, C.Y. Lin and J.S. Chang, “Kinetics of Hydrogen Production
    with Continuous Anaerobic Cultures Utilizing Sucrose as the Limiting
    Substrate.”, Appl. Microbiol. Biotechnol., 2001, 57, 56-64.
    Das, D., and Verizoğlu, T.N.,“Hydrogen Prouction by Biogyical presss:a
    surrey of liter.” International J. Hydrogen Energy., 2001, 26, 13-28.
    Dong, X., Philippe, J.Y.M.J., Schyns, and Alfons, J.M.S., “Degradation of
    galactomannan by a Clostridium butyricum strain.”, Antonie van
    Leeuwenhoek, 1991, 60, 109-114.
    Eva R. K., and Z.Y. Cao, “Clostridial Strain Degeneration.”, FEMS
    Microbiology Review, 1995, 17, 307-315.
    Fisher, F., and Goodall, A.H., “Membrane fusion by virsues and chemical
    agents.”, Tech. Cell. Physiol., 1981, P115, 1-36.
    Gerhard, G., “ Bacterial Metabolism .“ , Spring-Verlag New York, 1986,
    208-282.
    Gest, H., and Peck, H.D., Jr., “A Study of te Hydrogenlyase Reaction
    with systems derived from normal and anaerobic coli-aerogenes
    bacteria.”, J. Baceriol., 1955, 70, 326.
    Gray, C.T., and Gest, H., “biological formation of Moleculat Hydrogen.”,
    Science, 1965, 148, 186.
    Heydrickx, M., Vansteenbeeck, A., Vos De P. and Ley De J., “Hydrogen
    Gas Production from Continuous Fermentation of Glucose in a Minimal
    Medium with Clostridium butyricum LMG 1213t1.”, System. Appl.
    Microbiol., 1986, 8, 239-244.
    Heydrickx, M., Vos De P., Thibau, B., Stevens, P., and Ley De J. ,” Effect
    of Various External Factors on the Fermentative Production of Hydrogen
    Gas from Glucose by Clostridium butyricum Strains in Batch Culture .“ ,
    System. Appl. Microbiol., 1987, 9, 163-168.
    Heydrickx, M., Vos De P., Vancanneyt, M., and Ley De J.,“ The
    fermentation of Glycerol by Clostridium butyricum LMG 1212t2 and
    1213t1 and C. pasteurianum LMG 3285.”, Appl. Microbiol. Biotechnol., ,
    1991, 34, 637-642.
    Hunddleston, J., Veide, A., Kohler, K., Flanagan, J., et al., “The
    Molecular Basis of Partitioning in Aqueous Two-Phase System.”, Trends
    Biotechnol., 1991, 9, 381-388.
    Johns, A. T., “The Mechanism of Popionic Acid Formation by Veillonella
    gazogenes.”, J. Gen. Microbiol., 1951, 5, 326.
    Johns, A. T. and Barker, H. A., “Methane formation, fermentation of
    ethanol in absence of CO2 by methanobacillus omelianskii.”, J. Bacterial.,
    1960, 80, 837.
    Joseph, S. T., and Eva, R. K ., “ Intracellular Conditions Required for
    Initiation of Solvent Production by Clostridium acetobutylicum.”, Appl.
    and Environ. Microbiol., 1986, 52(1), 86-91.
    J.P. Chen, and M.S. Lee, “Enhanced Production of Serratia marcescens
    chitinase in PEG/dextran Aqueous Two-Phase Systmes.”, Emzyme and
    Microbial Technology, 1995, 17, 1021-1027.
    Jungermann, K., Thauer, P. K., Leimenstoll, G., and Decker, K.,
    “Fenction of Reduced Pyridine Nucleotide-ferredoxin Oxidoreductases in
    saccharolytic clostridia.”, Biochim. Biophys. Acta, 1973, 305, 268-280.
    Jun M. Y., Kim S. K. and Kim S. Y., “Riboflavin-Sensitized Phooxidation
    of Ascorbic Acid;Kinetics and Amino Acid Effects.”, Food Chemistry,
    1995, 53(4), 397-403.
    Karube, I., Suzuki, S., Matsunaga, T., Kuriyama S., and, “Biochemical
    Energy Conversion by Immobilized Whole Cells.”, Ann. N.Y. Acad. Sci.,
    1981, 369, 91-98.
    Karube, I., Urano, N., Matsunaga, T., and Suzuki, S., “ Hydrogen
    Production from Glucose by Immobilized Growing Cells of Clostridium
    butyricum.”, Eur. J. Appl. Microbiol. Biotechnol., 1982, 16, 5-9.
    Kataoka, N., Miya, A., and Kiriyama, K., “Studieson Hydrogen
    Production by Continuous Cultrue System of Hydrogen-Producing
    Anaerobic Bacteria.”, Wat. Sci. Tech., 1997, 36, 41-47.
    Laurence, G., Christian, C., Isabel, V., and Philippe, S. ,“ Regulation of
    Metabolic Shifts in Clostridium acetobutylicum ATCC 824.” , FEMS
    Microbiology Reviews, 1995, 17, 287-297.
    Lawier, A., “Walker Bill to boost hydrogen sparks democratic
    grumbling.”, Science, 1995, 267, 613.
    Majizat, A., Mitsunori, Y., Mitsunori, W., Michimasa, N., and Jun''ichiro,
    M., “Hydorgen gas production from glucose and its microbial kinetics in
    anaerobic system.”,Wat. Sci. Tech., 1986, 36(6-7), 279-286.
    Mattiasson, B., and Kaul, K., “Separation, Recovery, and Purification in
    Biotechnology.”, American Chemical Society, 1986, 78-92.
    May, P. S., Blanchard, G. C., and Foley, R. T., “ Biochemical hydrogen
    generators:18th Annual Proceedings Power Sources Conferences.”, 1964,
    May 19-21.
    Mitsui, A. In., “Solar-Hydrogen Energy System.”, Pergamon, Oxford and
    New York, 1979, 171.
    Nandi, R., and Sengupta, S.,“Microbial Production of Hydrogen: An
    Oveview.”, Rohrback, G. H., Scott, W. R., and Canfield, J. H., in
    proceedings of the 16th Annual Power Sources Conference, 18, 1962.
    Ozadali, F., Glatz, B. A., and Glatz, C. E., “Fed-batch fermentation with
    and without on-line Extraction for Propionic and acetic acid production
    by Propionibacterium acidipropionici.”, Appl. Microbiol. Biotechnol.,
    1996, 44, 710-716.
    Odette H.J., Roberto F.L., Terreni, M., and Jose M.G., “Use of Aqueous
    Two-Phase Systems for in situ Extraction of Water Soluble Antobiotics
    During Their Synthesis by Enzymes Immobilized on Porous Supports.”
    Biotechnol. Bioeng., 1998, 59(1), 73-79.
    Pakes, W.C.C. and Jollyman, W.H., “The Bacterial Decomposition of
    formic acid into CO2 and H2.”, J. Chem. Soc., 1901, 79, 386.
    Patrick, C. Hallenbeck, and John, R. Benemann, “Biological Hydrogen
    Production;Fundamentals and Limiting Processes.”, International Journal
    of Hydrogen Energy, 2002, 27, 1185-1193.
    Planas, J., Rådström, P., Tjerneld, F., and Hahn-Hägerdal, B., “Enhanced
    Production of Lactic Acid through the use of a novel aqueous two-phase
    system as an extractive fermentation system.”, Appl. Microbiol.
    Biotechnol., 1996, 45, 737-743.
    Planas, J., Lefebvre, D., Tjerneld, F., and Hahn-Hägerdal, B., “Analysis
    of Phase Composition in Aqueous Two-Phase Systems Using a
    Two-Column Chromatographic Method : Application to Lactic Acid
    Production by Extractive Fermentation.”, Biotechnol. Bioeng., 1997, 54,
    303-311.
    Rheinheimer, G., “ The Influence of Environmental Factors on the
    Development of Microorganisms.”, Rheinheimer G. eds., Aquatic
    Microbiology 4th ed., pp.111-147, Baffins Lane, 1992, England.
    Rito-Palomares, M., and Lyddiatt, A., “Short Communication Practicl
    Implementation of Aqueous Two-Phase Processes for Protein.”, J. Chem.
    Technol. and Biotechnol., 2000, 75, 632-638.
    Sinha, J., Dey, P.K., and Panda, T., “Aqueous Two-Phase : the System of
    Choice for Extractive Fermentation.”, Appl. Microbiol. Biotechnol., 2000,
    54, 476-486.
    Suzuki, S., Karube, I., Matsunga, T., and Kuriyama, S.,” Biochemical
    energy conversion by immobilized whole cells of Clostridium
    butyricum.”, Biochimie, 1980, 62, 353.
    Suzuki, S., Karube, I., Matsunga, T., and Kuriyama, S.,” Biochemical
    Energy Conversion by Immobilized whole Cells.”, Annals New York
    Academy of Sciences, 1983, 133-143.
    Taguchi, F., Chang, J. D., Takiguchi, S., and Morimoto, M., “Efficient
    Hydrogen Production from Starch by a bacterium isolated from termites.”,
    1992, 73, 244-245.
    Taguchi, F., Chang, J. D., Mizukami, N., Saito-Taki, T., Hasegawa, K.,
    and Morimoto, M., “Isolation of a hydrogen productionbacteria,
    Clostridium beijerinckii strain AM 21B from termites.”, Can. J.
    Microbiol., 1993, 39, 726-730.
    Taguchi, F., Mizukami, N., Hasegawa, K., Hasegawa, K., and Saito-Taki,
    T., “Direct conversion of cellulosic materials to hydrogen by Clostridium
    sp. Strain no. 2.”, Enzyme Microbiol. Technol., 1995, 17, 147-150.
    Taguchi, F., Mizukami, N., Saito-Taki, T., and Hasegawa, K., “Hydrogen
    production from continuous fermentation of xylose during growth of
    Clostridium sp. Strain no.2 .”, Can. J. Microbiol. , 1995, 41, 536-540.
    Taguchi, F., Hasegawa, K., Saito-Taki, T., and Hara, K., “Simultaneous
    production of xylanase and hydrogen using xylan in batch culture of
    Clostridium sp. strainX53.”, J. Ferment. Bioeng., 1996, 81(2), 178-180.
    Taguchi, F., Yamada, K., Hasegawa, K., Taki-Saito, T., and Hara, K.,
    “Continuous hydrogen Production by Clostridium sp. Strain No.2 from
    Cellulose Hydrolysate in an Aqueous Two-Phase System.”, Journal of
    Fermentation and Bioengineering, 1996, 82, 80-83.
    Thauer, R. K., Jungermann, K., and Decker, K., “Energy conservation in
    chemotrophic anaerobic bacteria.”, Baceriol. Rev., 1977, 41, 100.
    Thierry Colin, André Bories, Céline Lavigne, and Guy Moulin, “Effects
    of Acetate and Butyrate During Glycerol Fermentation by Clostridium
    butyricum.”, Current Microbiology, 2001, 43, 238-243.
    Tjerneld, F., Persson, I., Albertsson, P., and Hahn-Hägerdal, B.,
    “Enzymatic Hydrolysis of Cellulose in Aqueous Two-Phase Systems. II.
    Semicontinuous Conversion of a Model Substrate, Solka Floc BW 200.”,
    Biotechnol. Bioeng., 1985, 27, 1044-1050.
    Tjerneld, F., Persson, I., Albertsson, P., and Hahn-Hägerdal,
    B.,“Enzymatic Hydrolysis of Cellulose in Aqueous Two-Phase Systems. I.
    Partition of Cellulases from Trichoderman reesei.”, Biotechnol. Bioeng.,
    1985, 27, 1036-1043.
    Twarog, R., and Wolfe, R. S., “Role of Butyryl Phosphate in the Energy
    Metabolism of Clostridium tetanomorphum.”, J. Bacteriol., 1965, 86,
    112.
    Walter, H., Brooks, D.E., and Fisher, D., “Partitioning in Aqueous
    Two-Phase Systems.”, Academic press, 1985.
    Wu, Z., and S.T. Yang, “ Extractive Fermentation for Butyric Acid
    Production from Glucose by Clostridium tyrobutyricum.”, Biotechnol.
    Bioeng., 2003, 82, 93-102.
    Yokoi, H., Saitsu, A., Uchida, H., Hirose, J., Hayashi, S., and Takasaki, Y.,
    “Microbial Hydrogen Production from Sweet Potato Starch Residue.”,
    Journal of Bioscience and Bioengineering, 2001, 91(1), 58-63.
    Yun J.K., Kaul, R., and Mattiasson, B., “Extractive Lactic Acid
    Fermentation in Poly(ethyleneimine)-Based Aqueous Two-Phase
    System.”, Biotechnol. Bioeng., 1996, 50, 280-290.
    Zhu, H., Wakayama, T., Asada, Y., and Miyake, J., “Hydrogen Production
    by four cultures with Participation by Anoxygenic Phototrophic
    Bacterium and Anaerobic Bacterium in the presence of NH4
    +.”, J.
    Hydrogen Energy, 2001, 26, 1149-1154.

    QR CODE
    :::