| 研究生: |
陳婉甄 Wan-Chen Chen |
|---|---|
| 論文名稱: |
探討酵母菌Glycyl-tRNA synthetase的嵌入區段對其生化活性的影響 The biological function of the insertion domain of yesat glycyl-tRNA synthetase |
| 指導教授: |
王健家
Chien-Chia Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 外文關鍵詞: | glycyl-tRNA synthetase |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
先前的研究指出,酵母菌中有兩個 Glycyl-tRNA synthetase(GlyRS)基因,分別是 GRS1(做出GlyRS1)和 GRS2(做出GlyRS2),其中 GRS2並非酵母菌生長所必需的;而 GRS1 分別使用 UUG 以及下游的 AUG 密碼作為轉譯起始點,轉譯出粒線體和細胞質的 GlyRS 異構型。GlyRS1 和 GlyRS2 的胺基酸序列之間具有 59% 相同性,兩者之間最大差異在於 GlyRS1 比 GlyRS2 多了一段嵌入區段,該區段約由 30 個胺基酸所組成,位於活化區附近,該區與接觸acceptor stem 有關,且富含 Lysine,主要序列是 KKKRKKKVK。本篇論文探討此嵌入區段是否會影響 GlyRS1 的生化活性及生物功能。結果發現刪除或突變 GlyRS1 的嵌入區段對酵母菌生長效率影響不大;但是在體外實驗下,發現刪除此嵌入區段會降低 GlyRS1 的生化活性;另外我們也發現若將 GlyRS2 與 Arc1p 形成一融合蛋白,該融合蛋白可提供細胞質所需的胺醯化活性,在體外實驗下發現Arc1p可增加 GlyRS2 的生化活性,其結果與體內實驗相呼應。在體外情況下,我們利用聚丙烯醯胺親和力共電泳來分析 GlyRS 的 tRNA 鍵結之研究目前仍在持續進行中。
revious studies have shown that in the yeast, two genes (GRS1 and GRS2) encode glycyl-tRNA synthetase (GlyRS1 and GlyRS2, respectively). GRS1 encodes both cytoplasmic and mitochondrial functions, whereas GRS2 is dispensable. GlyRS1 and GlyRS2 share 59% sequence identity. The most obvious difference between the two proteins is a 30-amino acid insertion that is present in GlyRS1. This insertion is found within an active site subdomain that is predicted to contact the acceptor stem of the tRNA substrate. The insertion is characterized by the lysine-rich consensus sequence KKKRKKKVK. In the work described here we focused on the function of the insertion domain in yeast, hoping to explore whether the mutation or deletion of this insertion will affect cytoplasmic or mitochondrial activities of GlyRS1. Evidence presented here shows that mutation and deletion of the insertion domain of GlyRS1 have little effect on its ability to restore a yeast GRS1 knockout strain growth in vivo. On the other hand, mutation or deletion of the insertion domain reduces its aminoacylation activity in vitro. Furthermore, when Arc1p is fused to GlyRS2, the resultant fusion can rescue the cytoplasmic activities of defect of a yeast GRS1 knockout strain. And Arc1p can increase aminoacylation activity of GlyRS2 in-cis in vitro. Further studies are underway to analyze the tRNA-binding ability of GlyRS by using Polyacrylamide Affinity Coelectrophoresis.
1. Arnez, J. G., and Moras, D. (1997) Trends Biochem Sci 22, 211-216
2. Carter, C. W., Jr. (1993) Annu Rev Biochem 62, 715-748
3. Giege, R., Sissler, M., and Florentz, C. (1998) Nucleic Acids Res 26, 5017-5035
4. Burbaum, J. J., and Schimmel, P. (1991) J Biol Chem 266, 16965-16968
5. Ribas de Pouplana, L., Turner, R. J., Steer, B. A., and Schimmel, P. (1998) Proc Natl Acad Sci U S A 95, 11295-11300
6. Martinis, S. A., Plateau, P., Cavarelli, J., and Florentz, C. (1999) EMBO J 18, 4591-4596
7. Fan, L., Sanschagrin, P. C., Kaguni, L. S., and Kuhn, L. A. (1999) Proc Natl Acad Sci U S A 96, 9527-9532
8. Marechal-Drouard, L., Khamiss, O., and Dietrich, A. (1993) Plant Mol Biol 22, 1157-1161
9. Gakh, O., Cavadini, P., and Isaya, G. (2002) Biochim Biophys Acta 1592, 63-77
10. Logan, D. T., Cura, V., Touzel, J. P., Kern, D., and Moras, D. (1994) J Mol Biol 241, 732-735
11. Logan, D. T., Mazauric, M. H., Kern, D., and Moras, D. (1995) EMBO J 14, 4156-4167
12. Ostrem, D. L., and Berg, P. (1970) Proc Natl Acad Sci U S A 67, 1967-1974
13. Mazauric, M. H., Keith, G., Logan, D., Kreutzer, R., Giege, R., and Kern, D. (1998) Eur J Biochem 251, 744-757
14. Turner, R. J., Lovato, M., and Schimmel, P. (2000) J Biol Chem 275, 27681-27688
15. Chang, K. J., and Wang, C. C. (2004) J Biol Chem 279, 13778-13785
16. Grosshans, H., Simos, G., and Hurt, E. (2000) J Struct Biol 129, 288-294
17. Galani, K., Grosshans, H., Deinert, K., Hurt, E. C., and Simos, G. (2001) EMBO J 20, 6889-6898
18. Simos, G., Sauer, A., Fasiolo, F., and Hurt, E. C. (1998) Mol Cell 1, 235-242
19. Simos, G., Segref, A., Fasiolo, F., Hellmuth, K., Shevchenko, A., Mann, M., and Hurt, E. C. (1996) EMBO J 15, 5437-5448
20. Wang, C. C., and Schimmel, P. (1999) J Biol Chem 274, 16508-16512
21. Ludmerer, S. W., and Schimmel, P. (1987) J Biol Chem 262, 10807-10813
22. Whelihan, E. F., and Schimmel, P. (1997) EMBO J 16, 2968-2974
23. Alzhanova, A. T., Fedorov, A. N., Ovchinnikov, L. P., and Spirin, A. S. (1980) FEBS Lett 120, 225-229
24. Ripmaster, T. L., Shiba, K., and Schimmel, P. (1995) Proc Natl Acad Sci U S A 92, 4932-4936
25. Chang, C. P., Lin, G., Chen, S. J., Chiu, W. C., Chen, W. H., and Wang, C. C. (2008) J Biol Chem 283, 30699-30706
26. Mucha, P. (2002) Acta Biochim Pol 49, 1-10
27. Schimmel, P., and Ribas De Pouplana, L. (2000) Trends Biochem Sci 25, 207-209
28. Szymanski, M., Deniziak, M., and Barciszewski, J. (2000) Acta Biochim Pol 47, 821-834
29. Majmudar, C. Y., Lum, J. K., Prasov, L., and Mapp, A. K. (2005) Chem Biol 12, 313-321
30. Ribas de Pouplana, L., and Schimmel, P. (2001) Cell 104, 191-193
31. Ribas de Pouplana, L., and Schimmel, P. (2001) Trends Biochem Sci 26, 591-596