跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鍾寶堂
Bao-Tang Chung
論文名稱: 奈米氧化鈦之表面改質與分散
Surface modification and dispersion of TiO2 nanoparticles
指導教授: 蔣孝澈
A.S.T Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 80
中文關鍵詞: 奈米粒子表面改質分散
外文關鍵詞: nano particle, surface modification, dispersion
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • The objective of this research is to prepare a high refractive index transparent inorganic/organic hybrid material, by dispersing nanocrystals of titanium dioxide in epoxy resin. In order to achieve a refractive index higher than 1.8, the content of inorganic material must be more than 50 wt%. Various possibilities have been tested. In one approach, commercially available titania nanocrystals were modified by a number of chemicals so that they can be dispersed to a good solvent for the resin. Among the surface modifier tested were different silanes and organic acids. In another approach, the direct reaction of Titanium tetrachloride (TiCl4) and hydroxy ethyl methacrylate (HEMA) was tried.
    The direct reaction of HEMA and TiCl4 produced a transparent precursor (Ti(OMA)4) that can be dispersed in various alcohols and other organic solvents. A transparent film can be cast and either thermal or UV cured. However, due to the coordination of four organic blocks to the titanium ion, the inorganic content of the material produced was rather low. Unless highly reactive titanium alkoxide was used, it is difficult to increase the inorganic content. In order to achieve a high inorganic content, it is necessary to start with nanoparticles of crystalline titania.
    To introduce inorganic particles into epoxy, the common wisdom is to modify the surface with epoxy functioned silane coupling agent GPS. Unfortunately, titania is so active that it react with the epoxy group of silane and produces some yellow complex. It was therefore necessary to coat the titania with silica barrier layer to avoid such reaction. After the coating of silica and silne modification, the titania nanocrystals was mixed with epoxy resin to form a clear sol in solvent. A hybrid material is produced upon the removal of the solvent. Finally, the hybrid epoxy resin is cured and its refractive index measured. A relation between the refractive index and the composition is obtained.

    Abstract I 目錄 II 圖目錄 IV 表目錄 VI 第1章 緒論 1 1-1 二氧化鈦材料簡介 1 1-2 奈米粒子的特性 2 1-3 有機-無機混成材料 3 1-4 研究方向 5 第2章 TiCl4與HEMA反應部分 6 2-1 文獻回顧 6 2-2 實驗藥品 9 2-3 實驗部分 10 2-3-1實驗2A─酸性分散二氧化鈦液體與HEMA混合後聚合之反應 10 2-3-2實驗2B─TiCl4與HEMA混合後聚合之反應 11 2-3-2.1 反應機構 11 2-3-2.2 TiCl4與HEMA直接反應之實驗步驟 12 2-3-3實驗2C─去除酸之實驗步驟 12 2-3-4實驗2D─TiCl4與HEMA,MA不同比例混合後聚合之反應 15 2-3-4.1 反應機構 15 2-3-4.2 TiCl4與HEMA,MA,H2O不同比例混合後聚合之實驗步驟 15 2-3-5實驗2E─TiCl4與HEMA,MA不同比例混合後加入溶劑聚合之反應 18 2-3-5.1 TiCl4與HEMA,MA,H2O不同比例混合後溶劑聚合之實驗步驟 19 2-4 結果與討論 22 2-5 結論 28 第3章 奈米粉體表面改質部分 29 3-1 文獻回顧 29 3-1-1 靜電斥力 30 3-1-2 DLVO理論(9) (Deryagin-Landau-Verwey-Overbeek theory) 30 3-1-3 表面立體障礙之構築改質之方法 33 3-1-4 矽烷與金屬氧化物反應 34 3-1-5 改質劑的選擇及改質方式 38 3-1-6 研究方向 38 3-2 實驗藥品 42 3-3 實驗部分 43 3-3-1實驗3A─以GPS及MPS改質酸性分散二氧化鈦粉體 43 3-3-1.1 以GPS及MPS改質酸性分散二氧化鈦粉體實驗步驟 44 3-3-2實驗3B─以GPS及MPS改質中性分散二氧化鈦粉體 45 3-3-3實驗3C─以壓克力酸MA改質酸性分散二氧化鈦 46 3-3-3 以壓克力酸改質酸性分散二氧化鈦分散液體實驗步驟 47 3-3-4實驗3D─以苯甲酸BA改質酸性分散二氧化鈦 48 3-3-4.1 以苯甲酸BA改質酸性分散二氧化鈦實驗步驟 48 3-3-5實驗3E─以油酸改質酸性分散二氧化鈦分散液體 49 3-3-5 以油酸改質酸性分散二氧化鈦分散液體之實驗步驟 49 3-3-6實驗3F─二氧化鈦奈米粒子直接與環氧樹脂開環反應 51 3-3-6.1 二氧化鈦奈米粒子直接與環氧樹開環反應實驗步驟 54 3-3-7 實驗3G─以鋁包覆酸性二氧化鈦實驗 55 3-3-7.1 以鋁包覆酸性二氧化鈦實驗步驟 55 3-3-8 實驗3H─以氧化矽包覆二氧化鈦實驗 55 3-3-8.1 以氧化矽包覆酸性二氧化鈦實驗步驟 57 3-3-8.2 以氧化矽包覆中性二氧化鈦實驗步驟(Stober process) 57 3-3-8.3 以氧化矽包覆酸性二氧化鈦實驗步驟(Stober process) 58 3-3-8.4 以氧化矽包覆酸性二氧化鈦後再進行GPS改質實驗步驟 59 第4章 結果與討論 60 第5章 結論與建議 75 參考文獻 79

    1.Wei-Fang Su; Hsiao-Kuan Yuan 2002, pp. -6492540.
    2.Wei-Fang Su; Hsiao-Kuan Yuan ACS Polymer Preprints 2000, 41
    (1), 574-575.
    3.R.Di Maggio, L. F. A. G. Chem.Mater. 1998, 10 1777-1784.
    4.Ulrich Schubert Chem.Mater. 2001, 13 3487-3494.
    5. Ulrich Schubert, E. A. W. G. A. H. C. C. Chem.Mater. 1992, 4
    291-295.
    6. Ulrich Schubert, T. V. l.; Norbert Moszner Chem.Mater. 2001, 13
    (11), 3811-3812.
    7. Ulrich Schubert; Gregor Trimmel; Peter Fratzl Chem.Mater. 2000,
    12,602-604.
    8. C.J.Brinker; G.W.Scherer Sol-Gel Science; 1992.
    9. Drew Myers Surfaces,Interfaces and Colloids; New York, 1990.
    10.Tang F.Q; uangX.X; Zhang Y.F; Guo J.K Cream Int. 2000, 26,93.
    11.W.Posthumus; P.C.M.M.Magusin; J.C.M.Brokken-Zijp; A.H.A.Tinnemans;
    R.van der Linde J.Colloid Interface Sci. 2003, (2004)(269), 109-116.
    12.Bourgeat-Lami, E.; Espiard, P.; Guyot, A. Polymer 1995, 36 4384.
    13.Yang-Yen Yu; Ching-Yi Chen; Wen-Chang Chen polymer 2003, 44(3),
    593-601.
    14.Yang-Yen Yu; Wen-Chang Chen Mater.Chem.Phys. 2003, 82(2), 388-395.
    15.Shigeru Ikeda; Yusuke Kowata; Keita Ikeue; Michio Matsumura;
    Bunsho Ohtani Applied Catalysis A: General 2004, 265(1), 69-74.
    16.Zongwei Li, Y. Z. Applied Surface Science 2003, 211 315-320.
    17.Nicholas J.Turro; P.H.Lakshminarasimhan; Steffen Jockusch; Stephen
    P.O''Brien; Stephanie G.Grancharov; Franz X.Redl NANO LETTERS 2002, 2
    (4), 325-328.
    18.Liu, Y. L.; Hsu, C. Y.; Wang, M. L.; Chen, H. S. Nanotechnology
    2003,(7), 813-819.
    19.J oseph N.Ryan; Meanchemelimelexh; Jenny L.Baeseman; Robin
    D.Magelky Environ.Sci.Technol. 2000, 34 2000-2005.
    20.Christina Graf; Dirk L.J.Vossen; Arnout Imhof; Alfons van
    Blaaderen Langmuir 2003, 19 6693-6700.
    21.Young Hwan Kim, D. K. L. Y. S. K. Colloids and Surfaces A:
    Physicochem. 2005, 257-258.
    22.Ning Gu; Lei Duan; Yongkang Sun; Zhirui Guo; Yun DuanMu; Ming Ma;
    Lina Xu; Yu Zhang Journal of Magnetism and Magnetic Materials 2005,
    285 65-70.
    23.Brinker, C. J.; Scherer, G. W. Sol-Gel Science The Physics and
    Chemistry of Sol-Gel Processing; Harcourt Brace Jovanovich: 1990.
    24.Rosida Selvin,賴平昇,楊靜萍,董志偉,蔣孝澈, 中華民國界面科學會訊
    2003,25,53-58.
    25.周德瑜,國立中央大學化學工程與材料工程研究所碩士論文,2001
    26.陳光龍,國立中央大學化學工程與材料工程研究所碩士論文,2000

    QR CODE
    :::