| 研究生: |
黃柏翰 Hank Huang |
|---|---|
| 論文名稱: |
金屬粉末射出成形毛細吸附脫脂之數值模擬 Numerical Simulations of Wick Debinding in Metal Injection Molding |
| 指導教授: |
洪勵吾
Lih-Wu Hourng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 金屬粉末射出成形 、毛細吸附脫脂 、有限差分法 、蒙地卡羅法 |
| 外文關鍵詞: | Monte Carlo method, wick debinding, metal powder injection molding, finite difference scheme |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬射出成形為一結合射出成形與粉末冶金優點的金屬製造方法,具有高複雜性、高性能、高精密度、量產成本低、材質應用自由度高等優點。其最耗時製程是將黏結劑從成形後的金屬或是陶瓷胚體內部移除,許多缺陷容易在此製程產生。為了縮短脫脂時間,可以利用吸附材粉末的毛細吸附作用來移除黏結劑。本文利用二維的網絡模型,結合有限差分法與蒙地卡羅法數值模擬毛細吸附脫脂機制,本研究將引用局部空孔度分佈概念,來決定最適宜空孔度分佈及特徵長度,找出最適宜理論分佈函數,根據此理論分佈函數藉由亂數產生器產生大量空孔度與滲透度數據,代入數值程式中模擬,其中以特徵長度做為控制體積的邊長。數值模擬結果顯示,吸附材移動邊界之輪廓線相當不規則且會隨機性的移動擴張,毛細吸附脫脂的時間與胚體的粉末粒徑成反比,與吸附材的粉末粒徑成正比。此外,胚體的脫脂比例與脫脂時間兩者成正比關係。
Metal injection molding(MIM) is a method in metallurgy that combins the benefits from both plastic molding and powder molding. Its advantages include high capacity, high accuracy, low cost for mass production, capability in treating complicated shapes and insensitivity of material using. The removal of binder from the shaped metal or ceramic powder compact is the most consuming step in the powder injection, its many the source of defects in the manufacturing step. In order to reduce the duration of debinding, capillary extraction of the binder by wick powder may be employed. The study utilizes a two-dimensional netwok model to investigate the mechanism of wick debinding by the numerical simulation with a technique combining finite-difference and Monte Carlo methods, a local porosity distribution is quoted in the study, applicable local porosity distribution and typical length scales. Proper theoretical porosity distribution functions are adopted to fit the applicable local porosity distribution, according to the theoretical distribution function, a random number generator is used to generate data of porosity with quantitative randomness for numerical simulations. The typical length scale is an important basis for determining the size of the control volume. The result shows that the contours of wetting wick are irregular and the walking flow edges behave randomly, wick debinding time is proportional to the wick powder diameter and inversely proportional to the compact diameter. As well as the debinding time is proportional to the fractional debinding time.
1. R.M. German,“Wear Applications Offer Further Growth for PIM”, Metal Powder Report, 1999, June, pp. 24~28
2. 陳文信,“金屬粉末射出成形技術”, 機械工業雜誌, 1996, vol.154, pp.148~158.
3. 楊穆仁,“粉末射出成形技術的近況及展望”, 粉末冶金會刊, 1997, vol. 22, no.2, pp.83~87.
4. M-J Yang, R. M. German,“Nanophase and Superfine Cemented Carbides Processed by Powder Injection Molding”, Int. J. Refract. Metals & Hard Mater., 1998, vol.16, pp.107~117.
5. C. Toy, Y. Palaci, T. Baykara“A New Thread-guide Composition via Low-pressure Injection Molding”, J. Mater. Proce. Tech., 1995, vol.51, pp.211~222.
6. Karl. F. Hens, “Thermat Expands Precision PIM Operation”, Metal Powder Report, 1998, June, pp. 18~22.
7. K. F. Hens, T. J. Roche, J. A. Grohowski, “Thermat Sets up for Precision PIM”, Metal Powder Report, 1996, June, pp. 24~28.
8. T. Hartwig, G. Vel, F. Petzoldt, H. Kunze, R. Scholl and B. kieback,“Powders for Metal Injection Molding”, J. Europ. Cerma. Soc, 1998,vol.18, pp. 1211~1216.
9. R. M. German, K. F. Hens, “Key Issue in Powder Injection Molding”, Ceramic Bulletin, 1991, vol.70, no.8, pp.1294~1302.
10. K. C. Hsu and G. M. Lo, “Effect of binder Composition on Rheology of Iron Powder Injection Moulding Feedstocks : Experimental Design”, Powder Metal,1996, vol.39, no.4, pp. 286~290
11. K. F. Hens, S. T. Lin, R. M. German and D. Lee, “The Effects of Binder on the Mechanical Properties of Carbonyl Iron Products”, August, Journal of the minerals metals & materials society, 1989 pp. 17~21.
12. R.M. German,“Theory of Thermal Debinding”, Int. J. Powder Metal, 1980, vol.23, no.4, pp. 237~245.
13.C. S. Aria, B.R. Petterson, “Influence of Process Variables on Debinding by Melt Wicking ”Modern Development in Powder Metallurgy, 1988, vol.18, pp.403~416.
14.B.R. Petterson, C.S.Aria,“Debinding Injection Molded Materials by Melt Wicking”, Journal of the minerals metals & materials society, 1989, vol.41, no.8, pp.22~24.
15.B.K. Lograsso, R.M. German,“Thermal Debinding of Injection Molded Powder Compacts”, Powder Metallurgy International, 1990, vol.2, no.1, pp.17~22.
16.R.Vetter, M.J. Sanders, I. Majewska-Glabus, linZ. Zhuang, Jurek Duszczyk,“Wick-Debinding in Powder injection Molding”, Int. J. Powder Metall., 1994, vol.30, no.1, pp.115~124.
17.R. Vetter, W.R. Brand Horninge, “Squared Root Wick Debinding Model for Powder Injection Moulding”, Powder Metallurgy, 1994, vol. 37, no.4, pp.265~271.
18.柳立明 ,“ 金屬射出成形中毛細吸附脫脂製程參數之最佳化分析 ”, 國立中央大學機械所碩士論文 , 1999.
19.C.C. Chen, L.W. Hourng,“Numerical Simulation of Two Dimensional Wick Debinding in MIM”, Podwer Metallurgy, 1999, vol.42, no.4, pp.313~319.
20.F. Trochu and R. Gauvin, "Limitations of A Boundary-Fitted Finite Difference Method For The Simulation of The Resin Transfer Molding Process", Journal of Reinforced Plastics and Composites, 1992, vol.11, pp.772~786.
21.G. Q. Martin, and J. S. Son, "Fluid Mechanics of Mold for Fiber Reinforced Plastics", Proceeding of the ASM/ESD 2nd Conference on Advanced Composite, Dearborn, Michigan, 1986, pp.149~157.
22. J. P. Coulter, and S. I. Güçeri, "Resin Impregnation during Composite Manufacturing:Theory and Experimentation", Composite Science and Technology, 1989, vol.35, pp.317~330.
23. R. Gauvin, and M. Chibani, "The Modeling of Mold Filling in Resin Transfer Molding", International Polymer Processing, 1986, vol.1, pp.43-46.
24. W. B. Young, K. Rupel, K. Han, L. J. Lee and M. J. Liou, "Analysis of Resin Injection Molding in Molds With Preplaced Fiber Mats. II: Numerical simulation and Experiments of Mold Filling" , Polymer Composites, 1991, vol.12, pp.30-38.
25. M. V. Bruschke, and S. G. Advani, "A Numerical Siumlation of the Resin Transfer Mold Filling Process", Proceedings of the Society of Plastics Engineers 47th. Annual Technical Conference(Antec/’89), 1989, pp.1769~1773.
26.M. V. Bruschke and S. G. Advani, "A Finite Element/Control Volume Approach to Mold Filling in Anisotropic Porous Media", Polymer Composites, 1990, vol.11, pp.398~405.
27.M. K. Um and W. I. Lee, "A Study on the Mold Filling Process in Resin Transfer Molding", Polymer Engineering and Science, 1991, vol.31, pp.765~771.
28.M. S. Shih and L. W. Hourng, “Numerical simulation of capillary-induced flow in a powder-embedded porous matrix”, Adv . Powder Tech., 2001, vol.12, no.4, pp.451-480.
29.C. Y. Chang, “Numerical simulation of two-dimensional wick debinding in metal powder injection molding”, Adv. Powder Tech., 2001, vol.14, no.2, pp.177~194.
30.T.A.Witten,L.M.Sander, “Diffusion-limited-aggreagtion”, Phys. Rev. Lett. , 1981,vol.27, pp.1400~1403.
31.Carlos A. Grattoni, Richard A. Dawe,“Anisotropy in Pore Structure of Porous Media”, Powder Technology, 1995, vol.85, pp.143~151.
32.W. Rose and W.A. Bruce, Evaluation of capillary characters in petroleum reservoir rock, Trans. AIME, 1949, vol.186, pp.127~142.
33. 林澤龍, “金屬粉末射出成型毛細吸附脫脂數值模擬與實驗分析”,國立中央大學機械所博士論文,2005
34.Rand Corporation, A million random digits with 100,000 normal deviates,Glencoe,IL:Free Press,1995
35.J.C Tannehill, D.A Anderson, R.H.Pletcher, Computational Fluid Mechanics and Heat Transfer, second edition, Taylor&Francis, PA, USA, 1997, pp.46~47, pp.146~148.
36.施明憲, “Randow walk 方法對轉注射出成型充填過程中氣泡消長行為之數值模擬”, 國立中央大學機械所博士論文, 2003.
37.鄭育宗, “金屬射出成型二維毛細脫脂機制之數值模擬”, 國立中央大學機械所碩士論文, 2001
38.陳裕元, “金屬粉末射出成型毛細吸附脫脂的實驗觀察與分析”, 國立中央大學機械所碩士論文, 2004