跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳景宜
Jingyi Chen
論文名稱: 設計、製作與量測具二維掃描功能之微機電內視鏡頭
Design, Fabrication and Testing of a Two-axis MEMS Scanner of OCT Endoscope
指導教授: 紀國鐘
G. C. Chi
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 97
語文別: 英文
論文頁數: 48
中文關鍵詞: 光學同調斷層影像內視鏡微機電掃描探針
外文關鍵詞: Endoscope, MEMS, Sc, OCT, Optical Coherence Tomography
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計並展示了一個嶄新的二維透鏡掃描系統,以作為光學同調斷層術的內視鏡頭之用。基本上初始版本的掃描系統包含三個主要部份:橫向運動驅動器,縱向運動驅動器與收光耦合光纖。利用微機電製程技術,我們在SOI基板上製作梳狀結構作為驅動器的基本設計。之後,我們將兩顆相同的非球面玻璃透鏡置放於驅動器的框架上成為掃描透鏡組,以作為日後光學同調斷層術所需的循序掃描功能。在位移正負50 um的範圍內,掃描角度最大可達5度。而聚光光點最小可以達1.6 um,整個循序掃描的面積為150 um x 150 um。由此可得知,此系統具備相當良好的光學及機械特性。在未來可以廣泛應用於前視型光學同調斷層術之內視鏡頭。


    In this thesis, a new two-axis lens scanning system as an optical coherence tomography endoscope is presented. Basically, the system consisted of three main parts in initial design: a lateral motion actuator, a vertical motion actuator and a collimator fiber. By using MEMS technology, the comb fingers structure on SOI wafer was took as a basic actuator. Then two same aspherical glass lenses were mounted on each frame of actuators as a pair for raster scanning in optical coherence tomography based endoscopic imaging. The maximum scanning angle is ± 5° at the lens displacement of ± 50 μm and the minimum beam spot size is 1.6 μm. The size of raster scanned image is 150 μm x 150 μm. The scanning characterization as well as the optical and mechanical designs of MEMS scanners is included. This new two-axis MEMS lens scanner is very functional for developing forward OCT imaging system capable of fitting in an endoscopic capsule.

    摘要 i Abstract ii Acknowledgements iii Table of Contents iv List of Figures vi Chapter 1:Introduction to the thesis 1 1.1 Motivation 1 1.2 Scope of the thesis 4 Chapter 2:Optical Coherence Tomography 5 2.1 Introduction 5 2.2 Coherence 6 2.3 Interference 6 Chapter 3:MEMS Devices 11 3.1 Introduction 11 3.2 Scanning probe nanolithography 11 3.2.1 Surface micromachining 11 3.2.2 Scanning probe nanolithography 12 3.2.3 Simulation results 14 3.2.4 Fabrication Process 15 3.3 Variable Optical Attenuator 18 3.3.1 Introduction 18 3.3.2. Principle and chip fabrication 19 3.3.3 Experimental Results 20 3.3.4 Conclusion 20 Chapter 4:2D MEMS Lens Scanner for OCT endoscope 21 4.1 Introduction 21 4.2 Optical Design of 2D Lens Scanner 21 4.3 Mechanical Design of 2D Lens Scanner 22 Chapter 5:Fabrication, Integration and Package 24 5.1 Micoractuator fabrication 24 5.2 Lenses integration 25 5.3 Device package with a print circuit board 26 Chapter 6: Static and Dynamic Testing 27 6.1 Optical characterizations 27 6.2 Mechanical characterizations 28 Chapter 7: Discussion and Conclusion 30 Reference 44 Publication lists 47

    [1]J. Fujimoto, W. Drexler, U. Morgner, F. Kartner, and E. Ippen, Optical Coherence Tomography: High Resolution Imaging Using Echoes of Light, Optics & Photonics News , pp. 25-31 (2000).
    [2]R. C. Youngquist, S. Carr, and D. E. N. Davies. Optical coherence-domain reflecto- metry: A new optical evaluation technique. Opt. Lett., 12: pp. 158-160, (1987).
    [3]K. Takada, I. Yokohama, K. Chida, and J. Noda. New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl. Opt., 26: pp. 1603-1606, (1987).
    [4]A. F. Fercher, K. Mengedoht, and W. Werner. Eye-length measurement by interferometry with partially coherent-light. Opt. Lett., 13: pp. 186-188, (1988).
    [5]C. K. Hitzenberger. Optical measurement of the axial eye length by laser Doppler interferometry. Inv. Ophthalmol. Vis. Sci., 32: pp. 616-624, (1991).
    [6]D. Huang, J. P.Wang, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto. Micronresolution ranging of cornea anterior-chamber by optical reflectometry. Lasers Surg. Med., 11: pp. 419-425, (1991).
    [7]D. Huang,E. A. Swanson, C.P. Lin, J. S. Schuman, W. G. Stinson,W. Chang, M. R.Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto. Optical coherence tomography. Science, 254: pp. 1178-1181, (1991).
    [8]J. W. Goodman. Statistical Optics. J. Wiley & Sons, New York, (1985).
    [9]J. M. Schmitt. Optical coherence tomography (OCT): A review. IEEE J. Select. Topics Quantum Electron., 5: pp. 1205-1215, (1999).
    [10]U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:Sapphire laser. Opt. Lett., 24: pp. 411-413, (1999).
    [11]W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto. In vivo ultrahigh resolution optical coherence tomography. Opt. Lett., 24: pp. 1221-1223, (1999).
    [12]A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-Arunyawee, and J. A. Izatt. In vivo video rate optical coherence tomography. Opt. Express, 3: pp. 219-229, (1998).
    [13]A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert. Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator. Opt. Lett., 15: pp. 326-328, (1990).
    [14]K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes. 400-Hz mechanical scanning optical delay line. Opt. Lett., 18: pp.558-560, (1993).
    [15]G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto. In vivo endoscopic optical biopsy with optical coherence tomography. Science, 276: pp. 2037-2039, (1997).
    [16]G. J. Tearney, B. E. Bouma, and J. G. Fujimoto. High speed phase- and group-delay scanning with a grating-based phase control delay line. Opt. Lett., 22: pp. 1811-1813, (1997).
    [17]M. E. Brezinski and J. G. Fujimoto. Optical coherence tomography: Highresolution imaging in nontransparent tissue. IEEE J. Select. Topics Quantum Electron., 5: pp. 1185-1192, (1999).
    [18]J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski. Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy. Neoplasia, 2: pp 9-25, (2000).
    [19]L. Pedrotti and L. S. Pedrotti, Introduction to Optics, Prentice-Hall International, Inc., 2nd. edition, (1996).
    [20]E. Saff and A. Snider, Fundamentals of Complex Analysis for Mathematics, Science and Engineering, Prentice Hall, 2. edition edition, (1993)
    [21]B. Saleh and M. Teich, Fundamentals of Photonics, JohnWiley & Sons, (1991)
    [22]L. Thrane, Optical Coherence Tomography: Modelling and Applications, PhD thesis, (2000).
    [23]R.S. Muller, R.T. Howe, S.D. Senturia, R.L. Smith, R.M. White, Microsensors, IEEE Press, (1990).
    [24]S.M. Sze, Semiconductor Sensors, Wiley, (1994).
    [25]W.S. Trimmer, Micromechanics and MEMS, Classic and Seminal Papers to 1990, IEEE Press, (1996).
    [26]J. Bryzek, K. Petersen, W. McCulley, IEEE Spectrum, pp. 20, (1994).
    [27]R.T. Howe, J. Vac. Sci. Technol. B 6, pp. 1809, (1988).
    [28]R.S. Muller, Sens. & Actuators A, pp. 21-23, (1990).
    [29]K. Petersen, Proc. IEEE Electron Devices 70, pp.420, (1982).
    [30]R.T. Howe, B.E. Boser, A.P. Pisano, Sens. Actuators A 56, pp. 167, (1996).
    [31]Takahito Ono, et. al., Nanomechanics of Ultrathin Silicon Beams and Carbon Nanotubes, MEMS 2003 Conference, Kyoto, pp. 33-36, (2003).
    [32]David Bullen, et al., Micromachined Arrayed Dip Pen Nanolithography Probes for Sub-100nm Direct Chemistry Patterning, MEMS 2003 Conference, Kyoto, pp. 4-7, (2003).
    [33]V.M. Bright, et al, Design and performance of a double hot arm polysilicon thermal actuator, SPIE Micromachining and Microfabrication Conference, Austin, TX, pp. 296-306, (1997).
    [34]P. Vettiger and G. K. Binnig, et. al, The“Millipede” - More than one thousand tips for future AFM data storage, IBM J. Res. Develop. Vol. 44 No. 3, (2000).
    [35]H.-W. Lee, S.-Y. Wen, and W.-Z. Guo, Bi-directional differential actuator with two degree-of-freedom, to be presented in Conference on Lasers and Electro Optics, Pacific Rim, Taipei, Taiwan, (2003).
    [36]Kenji Tokoro, D. Uchikawa, M. Shikida and K. Sato, Anisotropic Etching Properties of Silicon in KOH and TMAH solutions, International symposium on micromechatronics and human science, pp. 65-70, (1998).
    [37]C. Marxer, P. Griss and N. F. de Rooij, A Variable Optical Attenuator Based o Silicon Micromachanics, IEEE Photonics Technology Letters, vol. 11, No. 2, pp. 233-235, (1999).
    [38]C. H. Ji, Y. Yee, J. Choi, and J. U. Bu, Electromagnetic variable optical attenuator, IEEE/LEOS International Conference on Optical MEMS, pp. 49-50, (2002).
    [39]Cornel Marxer, Boudewijn de Jong and Nico de Rooij, Comparison of MEMS Variable Optical Attenuator Designs, IEEE/LEOS International Conference on Optical MEMS, pp. 189-190, (2002).
    [40]A. Bashir, P. Katila, N. Ogier, B. Saadany, D. A. Khalil, A MEMS-Based VOA with very low PDL, IEEE Photonics technology letters, vol. 16, no. 4, (2004).
    [41]H.Toshiyoshi, K Isamoto, A. Morosawa, M.Tei and H.Fujita, A 5-Volt Operated MEMS Variable Optical Attenuator, TRANSDUCERS ‘03, pp. 1768-1771, (2003).

    QR CODE
    :::