| 研究生: |
黃翔暐 Hsiang-Wei Huang |
|---|---|
| 論文名稱: |
半導體製程可靠度之研究 |
| 指導教授: |
高信培
Hsing-Pei Kao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理研究所 Graduate Institute of Industrial Management |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 半導體製程 、預診斷與運行狀況管理 、過程失效模式與效應分析 、故障樹分析 |
| 外文關鍵詞: | Semiconductor process, Prognostic and Health Management, Process Failure Mode and Effects Analysis, Fault Tree Analysis |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣的半導體產業發展至今已有近四十年的歷史,製程與產業結構鏈已經相當的完整與成熟。由於半導體產業鏈非常的複雜,並且環環相扣,若在過程中任何一個步驟出現錯誤,將對整體造成生產週期增加與產線停滯等嚴重後果。隨著預診斷及運行狀況管理(Prognostics and Health Management)的應用逐漸普及,本研究也沿用此方法的概念來進行改善。
本研究針對半導體產業鏈的關鍵問題找出預防及改善的方法,應用製程失效模式與影響分析(Process Failure Mode and Effect Analysis, PFMEA)分析潛在失效模式,透過風險優先數值(Risk Priority Number, RPN)找出高風險的問題,並結合故障樹分析(Fault tree analysis, FTA),區分出造成影響的嚴重性,在還沒發生故障前,擬定適當的製程改善對策及措施,降低可能造成的風險並提升製程、設備之可靠性。
Taiwan's semiconductor industry has developed for about 40 years. The process and industrial structure chain has been quite complete and mature. Because the semiconductor process is very complicated and interlocking, if some mistakes occur in any step of the process, the overall production cycle will increase and the production line will be stagnant. As the application of Prognostics and Health Management has become popular. This study has also used the concept of this technology to improve the problem.
This study identifies prevention and improvement methods for key issues in semiconductor processes. Applies process failure mode and effect analysis (PFMEA) to analyze potential failure modes and find out the high-risk problem through Risk Priority Number (RPN), and combined with the Fault Tree Analysis (FTA). Distinguish the severity of the impact, and formulate appropriate process improvement strategy and measures before the failure has occurred. Reduce the possible risks and improve the reliability of the process and equipment.
1. Automotive Industry Action Group, Potential Failure and Effect Analysis (FMEA), 4th Edition, 2008.
2. Benjamin Y. Choo, Peter A. Beling, Amy E. LaViers, Jeremy A. Marvel, and Brian A. Weiss, “Adaptive Multi-scale PHM for Robotic Assembly Processes”, National Institute of Standards and Technology, 2015.
3. Ferri, FAS., Rodrigues, LR., Gomes, JPP., de Medeiros, IP., Galvo, RKH., Nascimento, CL. “Combining PHM Information and System Architecture to Support Aircraft Maintenance Planning”, IEEE Systems Conference, pp. 60-65. April 15–18, 2013.
4. Hopp, W., and Spearman, M. 3rd. Factory Physics, Long Grove, IL: Waveland Press, Inc; 2008.
5. Hung, S.-W. and W.-M. Lu, “The Comparative Productivity Efficiency of Taiwan's Integrated Circuits Packaging/Testing FiRms” , Information Systems and Operational Research, 46 (3), pp.189-198, 2008
6. J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems architecture for industry 4.0-based manufacturing systems” , Manuf. Lett., vol. 3, pp. 18-23, Jan. 2015.
7. Kozmetsky, G. and P. Yue, “Comparative Performance of Global Semiconductor Companies”, Omega, 26(2), pp.153-175, 1998.
8. Liao, L., Minhas, R., Rangarajan, A., Kurtoglu, T., and de Kleer, J. “A Self-Aware Machine Platform in Manufacturing Shop Floor Utilizing MTConnect Data”, Annual Conference of the Prognostics and Health Management Society, September 29-October 2, 2014.
9. Marvel, JA., and Falco, JA. “Best Practices and Performance Metrics Using Force Control for Robotic Assembly”, National Institute of Standards and Technology; 2012.
10. Marvel, JA. “Collaborative Robotics: A Gateway into Factory Automation”, ThomasNet News, 2014.
11. N. Montgomery, D. Banjevic, and A. K. S. Jardine, “Minor maintenance actions and their impact on diagnostic and prognostic CBM models”, J. Intell. Manuf., Vol. 23, no. 2, pp. 303-311, 2012.
12. Paul Weissler, “GM Prognostics Use 4G for Data Acquisition, Cloud Analysis” , April 14, 2015.
13. Peng Y, Dong M, and Zuo MJ, “Current Status of Machine Prognostics in Condition-based Maintenance: a Review”, The International Journal of Advanced Manufacturing Technology, pp.297–313, 2010.
14. S. Yamijala, S. D. Guikema, and K. Brumbelow, “Statistical models for the analysis of water distribution system pipe break data,” Rel. Eng. Syst. Safety, Vol 94, pp. 282-293, Feb. 2009.
15. Y. G. Li and P. Nilkitsaranont, “Gas turbine performance prognostic for condition-based maintenance,” Applied Energy, Vol. 86, pp. 21522161, Oct. 2009.
16. Yoon, J., He, D., and Van Hecke, B. “A PHM Approach to Additive Manufacturing Equipment Health Monitoring, Fault Diagnosis, and Quality Control.”, Annual Conference of the Prognostics and Health Management Society; September 29-October 2, 2014.
17. 蕭庄亦,「故障樹分析軟體基本事件資訊輸入之改善研究」,碩士論文,國立雲林科技大學,2007 年。
18. 黃禮祥,「發展一評估供應鏈可靠度績效之決策支援方法」,碩士論文,國立中央大學,2001年。
19. 陳思達,「光碟製成設備故障樹分析與動態可靠度估算」,碩士論文,國立中央大學,2005年。
20. 沈世傑,「A Case Study on Combining FTA and FMEA to Improve MTBF of Products」,碩士論文,逢甲大學,2010年。
21. 小野寺勝重著,實踐FMEA手法–提升產品或系統的可靠性、維護和安全,張書文譯,中衛發展心,2001年。
22. 劉惠瑋,「案例式推理應用於失效模式與效應分析之研究-以電子連接器為例」,元智大學工業工程與管理學系碩士論文,2005年。
23. 張皇文,「以故障樹分析改善維修流程之研究—以電源轉換模組為例」,碩士論文,華梵大學,2018年。
24. 方勇盛,「以失效模式與效應分析為基的製程問題,分析模式-以奈米碳管背光模組為例」,碩士論文,東海大學,2006年。
25. 林秀雄,「設計FMEA與製程FMEA不良模式與效應分析」,初版,新知企管顧問公司,1995年。
26. 李揚、鐘棠祺,「半導體產業之績效評估-跨國分析與比較」,東吳經濟商學學報,第89期,61-88頁,2015。
27. 黃偉碩,「利用貝氏分類與因子分析法於半導體製程錯誤偵測與診斷」,碩士論文,中華大學,2005年。
28. 沈志祥,「晶圓製設備產業智慧資源規劃之研究」,碩士論文,國立政治大學,2007年。
29. 工業技術研究院,台灣電子產業回顧與展望,2014。
30. 陳婉儀、彭茂榮,2017半導體產業年鑑,工業技術研究院產業經濟與趨勢研究中心,2017。
31. 湯群輝,「已失效為基礎的設計回饋及績效評量系統」,碩士論文,國立清華大學,2004。
32. 許玉芬,「品質失效分析與客訴流程管理-以太陽能電池為例」,碩士論文,國立中央大學,2015。