| 研究生: |
江培宏 Pei-huhg Chiang |
|---|---|
| 論文名稱: |
風車尾流效應之實驗研究 Experimental Study of the Wind Turbine Wake |
| 指導教授: |
朱佳仁
Chia-Ren Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 渦流逸散 、尾流 、風洞實驗 、風車 |
| 外文關鍵詞: | wind turbine, vortex shedding, wake flow, wind tunnel experiment |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以風洞實驗的方式研究垂直軸式和水平軸式風車的特性,研究內容可分成兩個部份:第一部分探討垂直軸式風車在穩態風場、陣風風場與柵網紊流三種不同的來流風場中的發電情形,研究結果顯示:垂直軸式風車於陣風風場及柵網紊流風場中發電量與穩態風場中相近,故紊流強度的變化對於垂直軸式風車的發電量並沒有顯著的影響。第二部份則在穩態風場及柵網紊流中量測下水平軸式風車的尾流流速剖面,發現量測得之尾流風速在各下游距離皆呈現自我相似的特性,但穩態風場和柵網紊流的風車尾流會有所不同,並找出風車尾流的流速剖面公式。最後利用風車尾流的流速頻譜研究風車後方的渦流逸散現象,發現渦流逸散頻率的史徹荷數為0.2。
This experimental study used a large-scale atmospheric boundary layer wind tunnel to investigate the characteristics of horizontal axis and vertical axis wind turbines. The first part, the output powers of vertical axis wind turbine in three different approaching flows, namely, steady flow, periodically gusty flow and grid-generated turbulent flow are measured and the results are almost the same. The second part, the velocity distribution behind a horizontal axis turbine in steady flow and grid-generated turbulent flows are measured. The experimental results demonstrate the turbine wake show the self-similar behavior and can be predicted by equations. Lastly, the velocity spectra of turbines wakes are used to examine the vortex shedding of turbine and the Strouhal number is 0.2.
1. 張瑞楨 (1998) “邊界層流中方柱體尾流之風洞實驗”, 國立中央大學土木工程系碩士論文
2. 朱佳仁 (2006) “風工程概論”, 科技圖書公司印行
3. 周辰穎 (2006) “陣風效應對風力機發電量影響之實驗研究”, 國立中央大學土木工程系碩士論文
4. 台灣電力公司 “台電新增電源計畫”(http://www.taipower.com.tw/)
5. Alfredsson, P.H. and Dahlberg, J.A. (1979) “A preliminary wind tunnel study of windmill wake dispersion in various flow conditions”, Technical Note AU-1499.
6. Battler, J.R., Zhavoronkov, A.A. and Matteson, M.J. (1982) “Particle deposition in the wake of charged spheres”, Journal of Aerosol Science, Vol.13, pp.491-498.
7. Burton, T., Sharpe, D., Jenkins, N. and Bossanti E. (2001) Wind Energy Handbook, Johns Wiley & Sons, Inc.
8. Celik, A.N. (2003) “Energy output estimation for small-scal wind power generators using Weibull-representive wind data”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.91, pp.693-707.
9. Crespo, A. and Hernandez, J. (1986) “A numerical model of wind turbine wake and wind farms”, European Community Wind Energy Conference, Vol.2, pp.111-115.
10. Fujisawa, N., Asano, Y., Arakaw, C. and Hashimoto, T. (2005) “Computational and experimental study on flow around a rotationally oscillating circular cylinder in a uniform flow”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.93, pp.137-153.
11. Gupta, R., Das, R. and sharma, K.K. (2006) “Experimental study of a Savonius-Darrieus wind machine”, Department of Mechanical Engineering, National Institute of Technology, Assam India.
12. Higuchi, H., Balligand, H. and Strickland, J.H. (1996) “Numerical and experimental investigations of the flow over a disk undergoing unsteady motion”, Journal of Fluids and Structures, Vol.10, pp.705-719.
13. Hogstrom, U., Kambezidis, H., Helmis, C.G., Smedman, A. and Asimakopoulos, D.N. (1988) “A field study of the wake behind a 2mw wind turbine”, Atmos Environ, Vol.22, pp.803-820.
14. Joseph, D.D. and Feng, J. (1995) “The negative wake in a second-order fluid”, Journal of Non-Newtonian Fluid Mechanics, Vol.57, pp.313-320.
15. Kendoush, A.A. and Izzat, A.W. (2005) “Experiments of fluid flow and heat convection in the wake of a disk facing a uniform stream”, International Journal of Thermal Sciences, Vol.44, pp894-902.
16. Kiya, M. and Abe, Y. (1999) “Turbulent elliptic wakes”, Journal of Fluids and Structures, Vol.13, pp1041-1067.
17. Lange, B., Larsen, S., Hojstrup, J. and Barthelmie, R. (2004) “Importance of thermal effect and sea surface roughness for offshore wind resource assessment”, International Journal of Thermal Sciences, Vol.92, pp.959-988.
18. Luken, E., Talmon, A. and Vermeuulen P.E.J. (1986) “Evaluation of two mathematical wind turbine wake models in various types of flow”, TNO Division of Technology for Society, Report 86-07.
19. Magnusson, M. and Smedman, A.S. (1994) “Influence of atmospheric stability on wind turbine wake”, Wind Energy, Vol.18, pp.139-152.
20. Magnusson, M. and Smedman, A.S. (1999) “Air flow behind wind turbine”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.80, pp.169-189.
21. McComb, W.D. (1990) The Physics of Fluid Turbulence, Oxford University Press, p.572.
22. Medici, D. and Alfredsson, P.H. (2005) “Measurements on a wind turbine wake: 3D effect and bluff body cortex shedding”, Wind Energy, Vol.9, pp.219-236.
23. Morcos, V.H. and Abdel-Hafez, O.M.E. (1996) “Testing of an arrow-head vertical-asix wind turbine model”, Renewable Energy, Vol.7, pp.223-231.
24. Schlichting, O.H. (1979) Boundary Layer Theory, Mc Graw-Hill Inc., 817p.
25. Pipe, C.J. and Monkewtiz, P.A. (2006) “Vortex shedding in flows of dilute polymer solutions”, Journal of Non-Newtonian Fluid Mechanic, Vol.139, pp.54-67.
26. Thomsen, K. and Sorense, P. (1999) “Fatigue loads for wind turbine operating in wake”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.80, pp.121-136.
27. Ubaldi, M. and Zunino, P. (2000) “An experimental study of the unsteady characteristics of the turbulent near wake of a turbine blade”, Experimental Thermal and Fluid Sciences, Vol.23, pp.23-33.
28. Vermeer, L.J. (2001) “A review of wind turbine wake research at TU Delft”, A Collection of the Wind Energy Symposium Technical Papers, pp.103-113.