跳到主要內容

簡易檢索 / 詳目顯示

研究生: 牟汝振
Ru-zhen Mou
論文名稱: 電磁式植牙骨整合穩固度檢測技術研究與裝置開發
An Electromagnetic Detection Technique Research and Device Development for Osseointegration Stability in Dental Implant
指導教授: 潘敏俊
Min-chun Pan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 86
中文關鍵詞: 牙科植體共振頻率分析電感磁激振霍爾效應莫萊小波訊號
外文關鍵詞: dental implant, resonance frequency analysis, inductor magnetism excitation, Hall-effect, Morlet wavelet
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於牙科植體骨整合檢測,本研究延續非接觸式電磁激振感應的方法於人工植牙手
    術後穩固度監測,檢測方式是利用交互變化的電流訊號輸入電感激振源產生交互變化的
    電磁力來激振結構,然後以線性霍爾效應感測器來量測其共振頻率。研究分成兩部分,
    第一部分介紹激振源電感的選擇基準和相關原理,以及霍爾效應感測器的原理,再說明
    電磁檢測裝置的架構,然後輸入訊號驗證電磁裝置的可行性;第二部分說明體外骨塊實
    驗設計及流程,並且與市售檢測裝置Osstell® ISQ 及電容式位移計量測植體的共振頻率
    結果作比較。
    自然頻率與結構剛性有關,同時也受到質量效應的影響,如果質量增加比剛性要多,
    則第一模態的自然頻率會下降;因此,骨塊實驗所增加緻密骨厚度將降低共振頻率,但
    是疏鬆骨的楊氏係數增加將使結構剛性變大,第一模態的共振頻率將上升。為了更接近
    臨床條件,也進行骨塊側面(頰舌方向)黏貼緻密骨實驗,此時骨塊整體剛性明顯增大,
    同時造成結構的共振頻率較難量測。研究結果顯示,所開發非接觸式電磁檢測裝置具可
    靠性,然未來仍需小型化及一體化,並進行動物實驗以確定植體骨整合檢測的實際應用
    效果。


    For dental implant osseointegration detection, this study continues a non-contact
    electromagnetic excitation in artificial implant surgery stable detection. Electromagnetic (EM)
    detection is used of interactive changing current signal, which input the inductor, and produce
    an interactive electromagnetic force to excite structures. Then linear Hall-effect sensor detects
    the resonance frequency (RF) of the dental implant structure. The thesis consists of two parts.
    First, the principle of inductive excitation source, selection criteria, the principle of Hall-effect
    sensors, and the schema electromagnetic detection device are briefly introduced. Then EM
    device will be fed with Morlet wavelet to verify the feasibility of the electromagnetic device.
    The second section describes in-vitro experimental processes, and the RF results obtained from
    measurement will be compared with Osstell® ISQ, and capacitive displacement sensor.
    Natural frequency depends on stiffness, and is affected by mass. If mass increases more
    than stiffness, natural frequency of the 1st mode shape decreases. Therefore, although the
    stiffness of structural bone blocks are increased by enlarging thickness of cortical bone, the
    RFs decreased. Increasing the Young’s modulus of cencellous bone will increase the structural
    stiffness. In order to correspond the clinical condition, bone block is attached the cortical shell
    in Buccal Lingual (BL) direction, it can increase the stiffness of bone block. As the thickness
    of cortical shell increase, RF is more difficult to measure. The results show that the
    non-contact electromagnetic detection device is reliable, but still need improvement to make
    the device more compact. Moreover, in-vivo experimental of animal- tibia is required to verify
    the devices applied in clinical condition.

    摘要……………………………………………………………………………………………ii Abstract……………………………………………………………………………………... iii 致謝………………………………………………………………………………………….. iv Contents……………………………………………………………………………………… v List of Figures………………………………………………………………………………. vii List of Table…………………………………………………………………………………. xi Chapter 1 Introduction .......................................................................................................... 1 1.1 Research Background and Motivation ............................................................... 1 1.2 Literature Review ................................................................................................. 1 1.2.1 Invasive Methods ........................................................................................ 1 1.2.2 Non-invasive Methods ................................................................................ 1 1.3 Framework ............................................................................................................ 4 Chapter 2 Detection Mechanism for Dental Implantation Stability .................................. 6 2.1 Structural Resonance Measurement ................................................................... 6 2.1.1 Resonance Frequency of Cantilever Structure ........................................... 6 2.1.2 Vibration Measurements............................................................................. 7 2.2 Excitation ............................................................................................................... 7 2.2.1 Transients Phenomena of R-L Circuit ...................................................... 11 2.2.2 Energy Storage in Inductors ..................................................................... 11 2.2.3 The Electromagnetic Force ....................................................................... 12 2.2.4 Morlet Wavelet ......................................................................................... 14 2.3 Detection .............................................................................................................. 15 2.3.1 Principle of Hall effect ............................................................................. 15 2.3.2 Response sensing ...................................................................................... 16 vi 2.3.3 Frequency Response Function .................................................................. 18 Chapter 3 Design and Implementation for EM Devices ................................................... 19 3.1 Introduction of EM Device ................................................................................ 19 3.2 Exciter Design ..................................................................................................... 22 3.3 Validation of EM Device .................................................................................... 27 Chapter 4 In-vitro Experimentation ................................................................................... 30 4.1 In-vitro Experiment Design ............................................................................... 30 4.2 In-vitro Bone Blocks Test for Device Verification ............................................ 32 Chapter 5 In-vitro Experimental Results and Discussion ................................................. 38 5.1 Device Justification ............................................................................................. 38 5.2.1 First in-vitro test…………………………………………………………41 5.2.2 Second in-vitro test……………………………………………………...47 5.2.3 RF comparison between first and second in-vitro experiment………….49 5.2 Experiment Discussion ....................................................................................... 53 Chapter 6 Conclusions and Future Work ........................................................................... 55 Reference……………………………………………………………………………………. 56 Appendix A: The RF results for first in-vitro experiment …….......…………………… 58 Appendix B: The RF results for second in-vitro experiment attach side cortical shell. 66

    [1] H.J.Lee, I.S.Yeoand T.K.Kwon,"Removal Torque Analysis of Chemically Modified
    Hydrophilic and Anodically Oxidized Titanium Implants with Constant Angular
    Velocity for Early Bone Response in Rabbit Tibia,"Tissue Engineering and
    Regenerative Medicine.10(5): pp. 252-259 (2013).
    [2] R.Rotundo, M. Nieri, L. Briccoli, R. Barone and C. Clauser,"Radiographic
    interpretation agreement in implant dentistry,"European Journal of Oral
    Implantology.4(2): pp. 135-143 (2011).
    [3] M.M.Bornstein, B. Al-Nawas, U. Kuchler and A. Tahmaseb,"Consensus Statements
    and Recommended Clinical Procedures Regarding Contemporary Surgical and
    Radiographic Techniques in Implant Dentistry,"International Journal of Oral &
    Maxillofacial Implant.29: pp. 78-82 (2014).
    [4] W.Schulte, B. Dhoedt, D. Lukas, M. Maunz and M. Steppeler,"Periotest for Measuring
    Periodontal Characteristics - Correlation with Periodontal Bone Loss,"Journal of
    Periodontal Research.27(3): pp. 184-190 (1992).
    [5] H.H.Choi, C. H.Chung, S. G. Kim, and M. K. Son,"Reliability of 2 Implant Stability
    Measuring Methods in Assessment of Various Periimplant Bone Loss: An In Vitro
    Study With the Periotest and Osstell Mentor,"Implant Dentistry.23(1): pp. 51-56
    (2014).
    [6] J.S.Oh and S.G.Kim,"Clinical study of the relationship between implant stability
    measurements using Periotest and Osstell mentor and bone quality assessment,"Oral
    Surgery Oral Medicine Oral Pathology Oral Radiology.113(3): pp. E35-E40 (2012).
    [7] M.Herrero-Climent, M. Albertini, J. V. Rios-Santos, P. Lazaro-Calvo, A.
    Fernandez-Palacin and P. Bullon,"Resonance frequency analysis-reliability in third
    generation instruments: Osstell mentor (R),"Medicina Oral Patologia Oral Y Cirugia
    Bucal.17(5): pp. E801-E806 (2012).
    [8] M.Herrero-Climent, R. Santos-Garcia, R. Jaramillo-Santos, M. M. Romero-Ruiz, A.
    Fernandez-Palacin , P. Lazaro-Calvo , P. Bullon and J. V. Rios-Santos ,"Assessment of
    Osstell ISQ's reliability for implant stability measurement: A cross-sectional clinical
    study,"Medicina Oral Patologia Oral Y Cirugia Bucal.18(6): pp. E877-E882 (2013).
    [9] R.Jaramillo, R. Santos, P. Lazaro, M. Romero, J. V. Rios-Santos, P. Bullon, A.
    Fernandez-Palacin , M. Herrero-Climent ,"Comparative Analysis of 2 Resonance
    Frequency Measurement Devices: Osstell Mentor and Osstell ISQ,"Implant
    Dentistry.23(3): pp. 351-356 (2014).
    [10] R.S.Snijders, A.J.van Wijk,and J.A.Lindeboom,"A comparative study of the Osstell
    (TM) versus the Osstell Mentor (TM) to evaluate implant stability in human cadaver
    mandibles,"Journal of Oral Rehabilitation.40(10): pp. 774-779 (2013).
    57
    [11] H.B.Zhuang, W. S. Tu, M. C. Pan, J. W. Wu, C. S. Chen, S. Y. Lee and Y. C.
    Yang,"Non-contact Vibro-acoustic Detection Technique for Dental Osseointegration
    Examination,"Journal of Medical and Biological Engineering.33(1): pp. 35-44 (2013).
    [12] R.Vayron , E. Soffer, F. Anagnostou and G. Haiat, "Ultrasonic evaluation of dental
    implant osseointegration,"Journal of Biomechanics.47(14): pp. 3562-3568 (2014).
    [13] P.Arpaia, F.Clementeand A.Zanesco,"Low-invasive diagnosis of metallic prosthesis
    osseointegration by electrical impedance spectroscopy,"IEEE Transactions on
    Instrumentation and Measurement.56(3): pp. 784-789 (2007).
    [14] M.Yamane, M. Yamaoka, M. Hayashi, I. Furutoyo, N. Komori and B.
    Ogiso,"Measuring tooth mobility with a no-contact vibration device,"Journal of
    Periodontal Research.43(1): pp. 84-89 (2008).
    [15] T.Shin Chia, C.S.Chenand M.C. Pan, "Assessment of Dental Implantation
    Osseointegration Through Electromagnetic Actuation and Detection,"Journal of
    Medical Devices.8(3): pp. 030940 (2014).
    [16] N. Meredith, L. Rasmussen, L. Sennerby, D. Alleyne, “Mapping implant stability by
    resonance frequency analysis,” Journal of Medical Science Research. 24(3): pp.
    191-193 (1996).
    [17] U. A. Bakshi, V. U. Bakshi, “Electrical Machines – 1,”Technical Publications. pp. 532
    (2009).
    [18] William H. Hayt, Jr. Jack E. Kemmerly andSteven M. Durbin, “Engineering Circuit
    Analysis,”McGraw-Hill, Indian International Ed.; 8th edition. pp. 880 (2011).
    [19] S. G. Mallat, “A Wavelet tour of signal processing,”Academic Press. Ed.; 3th
    edition.(1998)
    [20] C. R. Nave. (2000). HyperPhysics. Available: http://hyperphysics.phy-astr.
    gsu.edu/hbase/hframe.html
    [21] Honeywell, HALL EFFECT SENSING AND APPLICATION: Honeywell Inc., 2013.
    [22] J. T. Hsu, L. J. Fuh, M. G. Tu, Y. F. Li, K. T. Chen, H. L. Huang, “The effects of
    cortical bone thickness and trabecular bone strength on noninvasive measures of the
    implant primary stability using synthetic bone models,” Clinical implant dentistry and
    related research. 15(2): pp. 251-61 (2013).

    QR CODE
    :::