| 研究生: |
李培民 Pei-Min Lee |
|---|---|
| 論文名稱: |
利用最大熵方法決定粉末射出成型生胚 The determination of the most appropriate local porosity distribution of green compact in MIM by utilizing the maximum entropy mothod |
| 指導教授: |
洪勵吾
Lih-Wu Hourng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 最大熵方法 、空孔度 、局部空孔度分布 、熵 、金屬粉末射出成型 |
| 外文關鍵詞: | local porous distribution, entropy, maximum entropy method, metal powder injection molding, porous |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脫脂製過程在金屬粉末射出成型製程中相當耗時,關係著製造成本,胚體內黏結劑的殘留量足以影響成品品質,因此脫脂過程具有舉足輕重的地位。
影響胚體內黏結劑殘留量的參數相當多,綜合參考文獻得知,脫脂製程中最基本的影響參數為空孔度;一般數值模擬,多半將以上參數假設為均勻分布,如此的假設使得數值模擬有失真實性,因為在實際胚體中粉末分布會因為控制體積之不同而有所差異。
本研究先運用最大熵方法決定局部空孔度的分布函數與特徵長度,再運用統計方法計算其機率分布,最後對分布函數以卡方檢定法結合雙尾統計假設做統計檢定,其說明此分布函數可用beta函數取代,並用以模擬實際的局部空孔度分布。
The removal of binder in the metal powder injection molding (MIM) is the most time consuming step and determines the manufacturing cost. The residual quantity of binder in the compact has great influences on the mechanical properties of the products. So the de-binding process proves to be the key step in MIM.
From literature reviews, porous is the most important parameter. In most numerical simulations parameters are assumed as ideal as possible, and the results are thus unrealistic.
This study utilizes statistical form to calculate local porous distribution (LPD), then applying the maximum entropy method (MEM) to determine lattice constant and distribution function. Finally, the distribution function is proved to be a beta function by statistical testing.
1. 陳文信, “金屬粉末射出成型技術”, 機械工業雜誌, 154, 148-158(1996).
2. 鄒宗漢, “射出成型法中脫脂製程之研究”, 台灣大學材料科學與工程學研究所碩士論文(1991).
3. 周村裕幸, ”金屬粉末射出成型製程”, 粉末冶金月刊, 22(1), 31-40(1997).
4. 李孝忠, “金屬粉末射出成型真空脫脂機構之研究”, 台灣大學材料科學與工程學研究所碩士論文(1997).
5. R. T. Fox and Daeyong Lee, “Optimization of Metal Injection Molding: Experimental Design”, Int. J. Powder Metall., 26(3), 233-243 (1990).
6. J. R. Merhar, “Overview of Metal Injection Moulding”, MPR, 339-342 (1990).
7. K. M. Kulkarni, “Metal Powders and Feedstocks for Metal Injection Molding”, Int. J. Powder Metall., 36(3), 43-52 (2000).
8. L. Nyborg, E. Carlstrom, A. Warren and H. Bertilsso, “Guide to Injection Molding of Ceramics and Hardmetals: Special Consideration of Fine Powder”, Power Metall., 41(1), 41-45 (1998).
9. B. K. Lograsso and R. M. German, “Thermal Debinding of Injection Molded Powder Compacts”, Powder Metallurgy International, 22(1), 17-22 (1990).
10. R. M. German, “Theory of Thermal Debinding”, Int. J. Powder Metall., 23(4), 237-245 (1987).
11. K. C. Hsu and G. M. Lo, “Effect of binder Composition on Rheology of Iron Powder Injection Moulding Feedstocks : Experimental Design”, Powder Metall., 39(4), 286-290 (1996).
12. K. F. Hens, S. T. Lin, R. M. German and D. Lee, “The effects of Binder on the Mechanical Properties of Carbonyl Iron Products”, JOM, 17-21 (1989).
13. Y. S. Zu, S. T. Lin, “Optimizing the Mechanical Properties of Injection Molded W-4.9%Ni-2.1%Fe in Debinding”, J. Mater. Process. Tech., 71, 337-342(1997).
14. C. S. Aria, B. R. Petterson, “Influnce of Process Variables on Debinding by Melt Wicking”, Modern Development in Powder Metallurgy, 18, 403-416 (1988).
15. R. Vetter, M. J. Sanders, I. Majewska-Glabus, L. Z. Zhuang and J. Duszczyk, “Wick-Debinding in Powder Injection Molding”, Int. J. Powder Metall., 30(1), 115-124 (1994).
16. R. Vetter, W. R. Horninge, P. J. Vervoort, I. Majewska-Glabus, L. Z. Zhuang and J. Duszczyk, “Squared Root Wick Debinding Model for Powder Injection Moulding”, Powder Metall., 37(4), 265-271 (1994).
17. 柳立明, “金屬射出成型中毛細吸附脫脂製程參數之最佳化分析”, 中央大學機械工程研究所碩士論文(1999).
18. F. Boger, J. Feder, T. Jøssang and R. Hilfer, ”Microstructural sensitivity of local porosity distribution”, Physica A, 187, 55-70(1992).
19. 吳瑋芳, “利用視流法分析金屬射出成型脫脂製程中滲透度與毛細壓力之關係”, 中央大學機械工程研究所碩士論文(2000).
20. 陳釧鋒, “利用網絡模型模擬粉末射出成型製程毛細吸附機制”, 中央大學機械工程研究所碩士論文(2000).
21. Nailong Wu, The Maximum Entropy Method, Springer, Berlin. German(1997).
22. 顏月珠, 應用數理統計學, 三民書局股份有限公司, 台北台灣 (1990).
23. M. S. Shih and L. W. Hourng, “Numerical simulation of capillary-induced flow in a powder-embedded porous matrix”, Adv. Powder Tech., 12(4), 451-480(2001).
24. C. Y. Chang, “Numerical simulation of two-dimensional wick debinding in metal powder injection molding”, Adv. Powder Tech., 14(2), 177-194(2003).