| 研究生: |
傅文岑 Wen-Tsen Fu |
|---|---|
| 論文名稱: |
無接面鐵電場效電晶體與量測模式對增強極化之影響 Polarization Enhancement of Junctionless Ferroelectric FETs considering the Effects of Measurement Schemes |
| 指導教授: |
胡璧合
李依珊 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 鐵電電晶體記憶體 、極薄通道 、無接面 、耐久度 、記憶窗戶 、量測 |
| 外文關鍵詞: | Wake Up Free |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文討論鐵電材料-氧化鉿鋯(Hf1-xZrxO2,HZO)極薄通道無接面鐵電場效電晶體(Ultra Thin Channel Junctionless Ferroelectric FET )加入不同量測電壓時的鐵電現象,其中針對鐵電元件擁有的非理想效應喚醒效應(Wake Up Effect)進行探討,而喚醒效應指的是鐵電元件在操作前都要加入多個喚醒電壓,才能使鐵電元件擁有完整的鐵電效應,而施加多個喚醒電壓會造成耐久度(Endurance)的下降,也因此本篇論文提出在不影響耐久度的狀況下可以完全喚醒的量測手法。
本論文於實驗中製作極薄通道無接面鐵電場效電晶體,其結構是由水平爐管(Horizontal Furnace)低真空化學氣相沉積(Low-Pressure Chemical Vapor Deposition, LPCVD)出50nm n+-poly-Silicon 當作源極/汲極(Source/Drain),接著在源極/汲極上沉積厚度8nm-n+-poly-Silicon作為極薄通道,而閘極層(Gate Stack)分別是由原子層沉積(Atomic Layer Deposition, ALD)厚度為10nm的HZO作為鐵電層(Ferroelectric Layer),頂層金屬(Top Metal)則是由物理氣相沉積(Physical Vapor Deposition, PVD) TiN 80nm,然後快速熱退火700°C 30sec去達到鐵電的結晶化(Crystallization),完成閘極堆疊後沉積出二氧化矽保護層(Passivation Oxide),透過金屬化(Metalization)完成最後與金屬導線的連接並結束製程。
本論文探討不同喚醒電壓對鐵電元件鐵電性之影響,量測過程中先加入三種不同的實驗電壓包含FWFS(Forward Wake up Forward Sensing)、FWRS(Forward Wake up Reverse Sensing)、RWFS(Reverse Wake up Forward Sensing),量測結果發現已經喚醒過的鐵電元件可以透過相對電壓差(Relative Voltage)去增加更多有效轉換偶極子(Effective Switching Dipoles),進而增加鐵電元件在操作下擁有更好的鐵電能力其中包含更大的記憶窗戶(Memory Window)和優化次臨界擺幅(Subthreshold Swing)。
實驗結果顯示在喚醒後透過相對電壓差所增加的有效轉換偶極子不會受到後續操作過程而改變,也因此透過這一特性設計出無喚醒電壓的操作(Nearly Wake Up Free)的實驗,用簡單的電壓順序造成相對電壓差來取代傳統喚醒電壓,使得鐵電元件可以在比傳統喚醒電壓的元件還要更早的喚醒,即縮短其所需之喚醒電壓操作次數,並擁有更高的記憶視窗(Memory Window),其耐久度量測可以與傳統使用喚醒電壓的元件一樣承受超過100萬次的雙極性電壓波形操作。
In this thesis, to optimize the non-ideal wake-up effect, we analyzed the impact of different measurement voltages on ultra-thin channel Junctionless Ferroelectric FET (FeFET). The non-ideal wake-up effect exists in the Ferroelectric FET operations. To activate the dipoles in the Ferroelectric (FE) layer, we usually use multiple bipolar voltages, which causes damage to the ferroelectric and insulating layers and forces the endurance to degrade.
The ultra-thin channel junctionless Ferroelectric FET was fabricated to analyze the wake-up effect. We used Horizontal Furnace to deposit 50 nm n+poly-Si Source/Drain and 8 nm n+poly-Si ultra-thin channel. The gate stack was fabricated sequentially by ALD HZO 10 nm, PVD TiN 80 nm, and then RTP 700°C for 30 sec to achieve ferroelectric (FE) phase crystallization. After that, metallization was performed to complete the device fabrication.
Three different voltage schemes, including Forward Wake up Forward Sensing (FWFS), Forward Wake up Reverse Sensing (FWRS), and Reverse Wake up Forward Sensing (RWFS) for junctionless FeFETs, are considered to analyze the impact of the wake-up effect. We found that ferroelectric devices can obtain more effective switching dipoles than traditional wake-up voltage schemes by the relative voltages between the end of wake-up and the start of sensing voltages. Extra effective switching dipoles caused by the relative voltage can improve ferroelectricity and memory window.
Relative voltage can induce switching dipoles. We design a nearly wake-up-free experiment, using a large relative voltage to replace traditional wake-up voltages, which increases switching dipoles. Compared with conventional wake-up voltage, the nearly wake-up free voltage can induce the switching dipoles without adding bipolar voltages and optimize ferroelectric devices at the beginning of the measurement experiment—the improvement of ferroelectricity, including memory window and subthreshold swing.
[1] I.R. Committee, "International Roadmap for Devices and Systems," 2020 Edition. More Moore white paper.
[2] J. S. Meena, S. M. Sze, U. Chand and T.-Y. Tseng, "Overview of emerging nonvolatile memory technologies," Nanoscale Res Lett 9, 526 (2014), https://doi.org/10.1186/1556-276X-9-526.
[3] J. Wu et al., "Adaptive Circuit Approaches to Low-Power Multi Level/Cell FeFET Memory," 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), Beijing, 2020, pp. 407-413.
[4] D. Reis et al., "Design and Analysis of an Ultra-Dense, Low-Leakage, and Fast FeFET-Based Random Access Memory Array," in IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 5, no. 2, pp. 103-112, Dec. 2019, doi: 10.1109/JXCDC.2019.2930284.
[5] J. Valasek, "Piezo-Electric and Allied Phenomena in Rochelle Salt," Physical Review, vol. 17, pp. 475, 1921.
[6] M. H. Park et al., "A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants, " J. Mater. Chem. C, vol. 5, no. 19, pp. 4677–4690, 2017
[7] J. Müller et al., "Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG," 2012 Symposium on VLSI Technology (VLSIT), Honolulu, Hl, 2012, pp. 25-26.
[8] T. S. Böscke et al., "Ferroelectricity in hafnium oxide thin films," in Applied Physics Letters, vol. 99, no. 10, p. 102903, May 2011.
[9] S. Dünkel et al., "A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond," 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2017, pp. 19.7.1- 19.7.4, doi: 10.1109/IEDM.2017.8268425.
[10] K.-Y. Hsiang et al., "Ferroelectric HfZrO2 With Electrode Engineering and Stimulation Schemes as Symmetric Analog Synaptic Weight Element for Deep Neural Network Training," in IEEE Transactions on Electron Devices, vol. 67, no. 10, pp. 4201-4207, Oct. 2020, doi: 10.1109/TED.2020.3017463.
[11] Y. -W. Lee and V. P. -H. Hu, "Improved Energy Efficiency for Ferroelectric FET Non-Volatile Memory using Split-Gate Design," 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9180661.
[12] K. Ni et al., "A Circuit Compatible Accurate Compact Model for Ferroelectric-FETs," 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, 2018, pp. 131-132, doi: 10.1109/VLSIT.2018.8510622.
[13] T. Ali et al., "A Multilevel FeFET Memory Device based on Laminated HSO and HZO Ferroelectric Layers for High-Density Storage," 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 28.7.1-28.7.4, doi: 10.1109/IEDM19573.2019.8993642.
[14] S. Oh, J. Song, I. K. Yoo and H. Hwang, "Improved Endurance of HfO2-Based Metal- Ferroelectric-Insulator-Silicon Structure by High-Pressure Hydrogen Annealing," in IEEE Electron Device Letters, vol. 40, no. 7, pp. 1092-1095, July 2019, doi: 10.1109/LED.2019.2914700.
[15] T. Ali et al., "Impact of Ferroelectric Wakeup on Reliability of Laminate based Si-doped Hafnium Oxide (HSO) FeFET Memory Cells," 2020 IEEE International Reliability Physics Symposium (IRPS), 2020, pp. 1-9, doi: 10.1109/IRPS45951.2020.9128337.
[16] Su, CJ., Tsai, TI., Lin, HC. et al., “Low-temperature poly-Si nanowire junctionless devices with gate-all-around TiN/Al2O3 stack structure using an implant-free technique.” Nanoscale Res Lett ,7, 339 (2012).
[17] Liu, K. M., Peng, F. I., Peng, K. P., Lin, H-C., & Huang, T. Y. (2014). “The effects of channel doping concentration for n-type junction-less double-gate poly-Si nanostrip transistors.” Semiconductor Science and Technology, 29(5), [055001].
[18] T.A. Oproglidis, T.A. Karatsori, S. Barraud, G. Ghibaudo, C.A. Dimitriadis, “Leakage current conduction in metal gate junctionless nanowire transistors,” Solid-State Electronics, Volume 131,2017, Pages 20-23, ISSN 0038-1101,
[19] M. Gupta and V. P. -H. Hu, "Sensitivity Analysis and Design of Negative-Capacitance Junctionless Transistor for High-Performance Applications," in IEEE Transactions on Electron Devices, vol. 68, no. 8, pp. 4136-4143, Aug. 2021, doi: 10.1109/TED.2021.3089105.
[20] Y. Nakajima, K. Kita, T. Nishimura, K. Nagashio and A. Toriumi, "Phase transformation kinetics of HfO2 polymorphs in ultra-thin region," 2011 Symposium on VLSI Technology - Digest of Technical Papers, 2011, pp. 84-85.
[21] B. Kim et al., "Investigation of ultra thin polycrystalline silicon channel for vertical NAND flash," 2011 International Reliability Physics Symposium, 2011, pp. 2E.4.1-2E.4.4, doi: 10.1109/IRPS.2011.5784464.
[22] K. Chen, P. Chen and Y. Wu, "Excellent reliability of ferroelectric HfZrOx free from wake-up and fatigue effects by NH3 plasma treatment," 2017 Symposium on VLSI Technology, 2017, pp. T84-T85, doi: 10.23919/VLSIT.2017.7998136.
[23] M. -C. Nguyen, S. Kim, K. Lee, J. -Y. Yim, R. Choi and D. Kwon, "Wakeup-Free and Endurance-Robust Ferroelectric Field-Effect Transistor Memory Using High Pressure Annealing," in IEEE Electron Device Letters, vol. 42, no. 9, pp. 1295-1298, Sept. 2021, doi: 10.1109/LED.2021.3096248.
[24] M. Pešiü, V. D. Lecce, D. Pramanik and L. Larcher, "Multiscale Modeling of Ferroelectric Memories: Insights into Performances and Reliability," 2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2018, pp. 111-114, doi: 10.1109/SISPAD.2018.8551722.
[25] S. Oh, J. Song, I. K. Yoo and H. Hwang, "Improved Endurance of HfO2-Based Metal- Ferroelectric-Insulator-Silicon Structure by High-Pressure Hydrogen Annealing," in IEEE Electron Device Letters, vol. 40, no. 7, pp. 1092-1095, July 2019, doi: 10.1109/LED.2019.2914700.
[26] T. P. Ma and N. Gong, "Retention and Endurance of FeFET Memory Cells," 2019 IEEE 11th International Memory Workshop (IMW), 2019, pp. 1-4, doi: 10.1109/IMW.2019.8739726.
[27] M. -C. Nguyen, S. Kim, K. Lee, J. -Y. Yim, R. Choi and D. Kwon, "Wakeup-Free and Endurance-Robust Ferroelectric Field-Effect Transistor Memory Using High Pressure Annealing," in IEEE Electron Device Letters, vol. 42, no. 9, pp. 1295-1298, Sept. 2021, doi: 10.1109/LED.2021.3096248.
[28] H. Zhou et al., "Endurance and targeted programming behavior of HfO2-FeFETs," 2020 IEEE International Memory Workshop (IMW), 2020, pp. 1-4, doi: 10.1109/IMW48823.2020.9108131.
[29] F. Tian et al., "Impact of Interlayer and Ferroelectric Materials on Charge Trapping During Endurance Fatigue of FeFET With TiN/HfxZr1-xO2/Interlayer/Si (MFIS) Gate Structure," in IEEE Transactions on Electron Devices, vol. 68, no. 11, pp. 5872-5878, Nov. 2021, doi: 10.1109/TED.2021.3114663.
[30] S. Zhao et al., "Experimental Extraction and Simulation of Charge Trapping During Endurance of FeFET With TiN/HfZrO/SiO2/Si (MFIS) Gate Structure," in IEEE Transactions on Electron Devices, vol. 69, no. 3, pp. 1561-1567, March 2022, doi: 10.1109/TED.2021.3139285.
[31] M. Takahashi, W. Zhang and S. Sakai, "High-Endurance Ferroelectric NOR Flash Memory Using (Ca,Sr)Bi2Ta2O9 FeFETs," 2018 IEEE International Memory Workshop (IMW), 2018, pp. 1-4, doi: 10.1109/IMW.2018.8388835.
[32] Han Joon Kim, Min Hyuk Park,” A study on the wake-up effect of ferroelectricHf0.5Zr0.5O2 films by pulse-switching measurement,” 2016, Nanoscale, 8, 1383, doi: 10.1039/c5nr05339k