| 研究生: |
李威延 Williams Lee |
|---|---|
| 論文名稱: |
以詩詞本體論與類神經網路為基礎之唐詩推薦系統 A Tang Poem Recommendation System Based on the Poem Ontology and Artificial Neural Networks |
| 指導教授: |
蘇木春
Mu-chun Su |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 本體論 、自我組織特徵映射圖網路 、分類演算法 、唐詩 、推薦系統 |
| 外文關鍵詞: | clustering algorithm, Tang poem, recommendation system, ontology, self-organizing feature map |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了一個可依照唐詩情境來做推薦的唐詩推薦系統。本系統先利用詩詞本體論加標唐詩並使用類神經網路來將唐詩分類,再使用論文內提出的唐詩相似度計算公式來推薦唐詩。詩詞本體論為經由詩詞專家所編寫而成,為一個記錄了數個不同的主題類別,並且建立出類別間關係的資料結構。不同於以往的唐詩作者、格式或是關鍵字,使用詩詞本體論對唐詩所加標過的資訊,可以將唐詩的意境給表達出來。本論文使用自我組織特徵映射圖網路做為唐詩的分類器,配合加標後的資訊,將唐詩作意境上的分類。分類之後,本論文再提出之新的唐詩間相似度的公式-基於本體論相似度量測法,計算唐詩的相似度,推薦唐詩。
本系統使用被廣泛認知的「三百首唐詩」來當成系統的測試資料。每筆輸入的唐詩皆經由詩詞本體論加標過,以顯示唐詩的主題。本論文除了提出了一個新的唐詩分類之外,並提供了許多視覺化的分析工具以供系統的管理員更容易的去了解每個分群的特性。
最後,本論文提出了一個新型態的唐詩分類,和一個新的計算唐詩間相似度的公式-基於本體論相似度量測法,來將唐詩做適當的推薦。經由實驗與比較,本論文將唐詩被分為11群,其平均純粹度為0.80。而經由基於本體論相似度量測法所推薦的結果經由系統的使用者評分,亦得到不錯的成績。
Tang poems refer to poems written during China Tang Dynasty. By this time, Tang poems became one important literature, providing a large amount of poets and poems. This paper presents a Tang poem recommendation system based on the poem ontology and artificial neural networks. First of all, the feature representation of a poem is based on the poem ontology information, rather than its author, form, and key words. Then, the self-organizing feature map algorithm is adopted to cluster Tang poems into several clusters.
In our system, the database is consisted of 300 widely-known poems. Each poem is tagged with the poem ontology to reveal their information of themes. Our system not only provides a new way to cluster Tang poems but also several visual analysis tools for users to understand the characteristics of poem clusters.
In this thesis, a new measure for calculating the similarity degrees among poems is proposed. Based on the measure, a new approach for clustering Tang poems into several different styles is developed. Experimental results demonstrated that poems could be clustered into 11 different styles. In addition, the performance of the proposed poem recommendation system was encouraging.
[1] G. A. Carpenter and S. Grossberg, “A massively parallel architecture for a self-organizing neural pattern recognition machine,” Computer Vision Graphics Image Process, vol. 37, pp. 54-115, 1987.
[2] G. A. Carpenter and S. Grossberg, “ART 2: Self-organization of stable category recognition codes for analog input patterns,” Applied Optics, vol. 26, pp. 4919-4930, 1987.
[3] G. A. Carpenter and S. Grossberg, “The ART of adaptive pattern recognition by a self-organization neural network,” Computer, vol. 21, no. 3, pp. 77-88, 1988.
[4] G. A. Carpenter and S. Grossberg, “ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures,” Neural Networks, vol. 3, no. 2, pp. 129-152, 1990.
[5] J. Chen and M. Palmer, ”Chinese verb sense discrimination using an EM clustering model with rich linguistic features,” in Proceedings of the 42nd Annual meeting of the Association for Computational Linguistics, Barcelona, Spain, July 21-24, 2004, vol. ACL-04, no. 295.
[6] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. netes, and M. Sartin, “Combining content-based and collaborative filters in an online newspaper,” in Proceedings of ACM-SIGIR Workshop on Recommender Systems: Algorithms and Evaluation, USA, 1999.
[7] J. Delgado, N. Ishii, and T. Ura, “Content-based collaborative information filtering: Actively learning to classify and recommend documents,” in Proceedings of the Second International Workshop on Cooperative Information Agents II, Learning, Mobility and Electronic Commerce for Information Discovery on the Internet, 1998, vol. 1435, pp. 206-215.
[8] Z. S. He, W. T. Liang, L. Y. Li, and Y. F. Tian, ”SVM-based classification method for poetry style,” in Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, Aug. 19-22, 2007, vol. 5, pp. 2936-2940.
[9] L.Y. Li, Z. S. He, and Y. Yi, ”Poetry stylistic analysis technique based on term connections,” in Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, Aug. 26-29, 2004.
[10] Q. Li and B. M. Kim, “Clustering approach for hybrid recommender system,” in Proceedings of the IEEE/WIC International Conference on Web Intelligence, 2003, pp.33-38.
[11] T. Kohonen, “Self-organizing and Associate Memory,” Springer-Verlag, 3rd ed. London, 1989.
[12] T. Kohonen, “Self-organizing Maps,” Springer-Verlag, Berlin, 1995.
[13] V. Kostov, E. Naito, and J. Ozawa, “Cellular phone ringing tone recommendation system based on collaborative filtering method,” in Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, 2003, pp. 378-383.
[14] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl, “Grouplens: An open architecture for collaborative filtering of netnews,” in Proceedings of ACM Conference on Computing Systems, 1995, pp. 210-217.
[15] U. Shardanand and P. Maes, “Social information filtering: Algorithms for automating ‘Word of Mouth’,” in Proceedings of the Conference on Human Factors in Computing Systems, 1995, pp. 210-217.
[16] M. C. Su, C. Y. Chen, and Y. X. Zhao, “A SOMO-based recommendation system,” in 7th International Conference on Computational Intelligence and Natural Computing, Utah, USA, 2005, pp. 491-494.
[17] M. C. Su, T. K. Liu, and H. C. Chang, “Improving the self-organizing feature map algorithm using an efficient initialization scheme,” Tamkang Journal of Science and Engineering, vol. 5, no. 1, pp. 35-48, March 2002.
[18] A. Ultsh and H. P. Simem, “Kohonen’s self-organizing feature maps for exploratory data analysis,” in Proceedings of Neural Networks Conference, 1990, pp. 864-867
[19] Fish Ontology. [Online]. Available: http://fishdb.sinica.edu.tw/ June 20, 2008 [date accessed]
[20] Introduction to the Ontology of ShuShi''s Poems. [Online]. Available: http://cls.hs.yzu.edu.tw/cm/ June 20, 2008 [date accessed]
[21] Movielens. [Online]. Available: http://movielens.org/login June 20, 2008 [date accessed]
[22] Ontology. [Online]. Available: http://tomgruber.org/writing/ontology-definition-2007.htm June 20, 2008 [date accessed]
[23] WordNet. [Online]. Available: http://wordnet.princeton.edu/ June 20, 2008 [date accessed]
[24] 中央研究院中英雙語知識本體詞網. [Online]. Available: http://bow.sinica.edu.tw/ June 20, 2008 [date accessed]
[25] 田園派詳述. [Online]. Available: http://www.qfnu.edu.cn/department/chinese/jpkc/jiaoan/jiaoan_4_3-1.htm June 20, 2008 [date accessed]
[26] 維吉利亞大學圖書館的中華文學錦集. [Online]. Available: http://etext.lib.virginia.edu/chinese/frame.htm June 20, 2008 [date accessed]
[27] 維基文庫_全唐詩. [Online]. Available: http://zh.wikisource.org/w/index.php?title=%E5%85%A8%E5%94%90%E8%A9%A9&variant=zh-tw June 20, 2008 [data accessed]
[28] 數位典藏國家型科技計畫-全唐詩檢索系統. [Online]. Available: http://cls.hs.yzu.edu.tw/tang/Database/index.html June 20, 2008 [data accessed]
[29] 漢籍電子文獻. [Online]. Available: http://www.sinica.edu.tw/~tdbproj/handy1/ June 20, 2008 [date accessed]
[30] 邊塞派詳述. [Online]. Available: http://www.qfnu.edu.cn/department/chinese/jpkc/jiaoan/jiaoan_4_3-2.htm June 20, 2008 [date accessed]
[31] 馬東田,唐詩分類大辭典。四川辭書出版社,民國八十一年。
[32] 張占國、王鐵柱,中國歷代詩詞分類品讀。學苑出版社,北京市,民國九十五年。
[33] 張高評、黃永武,唐詩三百首鑑賞。黎明出版社,台北市,民國七十五年。
[34] 蕭滌非,唐詩鑒賞辭典。上海辭書出版社,民國九十四年。
[35] 蘇木春、張孝德,機器學習:類神經網路、模糊系統以及基因演算法則。全華科技圖書,民國九十三年。
[36] 羅鳳珠、張智星、許介彥,「植基於語意學及使用者認知觀點的詩詞資訊檢索系統設計:以全唐詩網站為例」,第三屆文學與資訊科技國際研討會,日本學藝大學,民國九十六年三月十九日到二十日。