| 研究生: |
劉俞亭 Yu-Ting Liu |
|---|---|
| 論文名稱: |
抗分散劑對水泥改良土水中沉降機制及力學特性之影響 The influences of coagulant on sedimentation mechanism and mechanical properties of cemented sand |
| 指導教授: |
張惠文
Huei-Wen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 液化阻抗 、水泥配比 、養治時間 、抗分散劑 |
| 外文關鍵詞: | liquefaction resistance, coagulant, curing time, cement content |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為探討抗分散劑對水泥改良土之水中沉降機制與改良效果之影響。為了避免改良土現地進行水中回填時發生水泥與砂土分離現象,故於改良土中添加各種類抗分散劑,並以自由沉降模式模擬改良土之現地水中回填。本研究探討重點以不同抗分散劑添加率0、86、344、600及860 mg/kg並配合1.0%、2.0%、3.0%、4.0%、6.0%及8.0%的水泥配比,改良材料選用波特蘭水泥第I型,養治時間分別為7天、14天、28天與56天,利用回填水槽製作改良土試體,進行無圍壓縮試驗與動力三軸試驗。試驗結果顯示以聚丙烯醯胺為抗分散劑時,改良土之抗分散性最佳,且改良土無圍壓縮強度隨著與抗分散劑添加率之遞增而呈現先升後降之現象,最佳抗分散劑添加率為344 mg/kg。此外,當養治時間為7天時,添加水泥配比8%之改良砂土;養治時間為28天,改良砂土添加水泥配比6%時,液化阻抗可獲得明顯增加,添加水泥及聚丙烯醯胺可有效地改善砂土的動態特性。
The purpose of this study is focused on the sedimentation mechanism and the improved efficiency of cement treated sands with coagulant in water. In order to avoid the separation of cement particles from cement treated sand in the backfilling of free sedimentation mode, the cement treated sands were improved by adding different types of coagulant. In this research, a series of unconfined compression tests and dynamic triaxial tests were carried out for a set of treated sands consisted of different coagulant content (from 0, 86, 344, 600 to 860 mg/kg), different cement contents (1.0%, 2.0%, 3.0%, 4.0%, 6.0% and 8.0%), Portland cement type I and different curing time (by 7, 14, 28, and 56 days). According to the experimental results, the polyacrylamide was the most effective coagulant for reducing the loss of cement. On the other hand, the unconfined compression strength increased initially and then decreased as the dosage increased. The optimum coagulant content is 344 mg/kg. Furthermore, when curing time was 7 days and cement content was 8% or when curing time was 28 days and cement content was 6%, the liquefaction resistance would be significantly increased. The results of this research show that the cement material and polyacrylamide will be contributive to improve the dynamic properties of sands such as shear modulus and cyclic stress ratio .
1.馮愛麗、覃維祖、王宗玉,「絮凝劑品種對水下不分散混凝土性能影響的比較」,石油工程建設,第28卷,第4期,第6-9頁(2002)。
2.聶容春,賈榮仙,鄭描,徐初陽,澱粉-聚丙烯醯胺接枝共聚物的UV合成及絮凝效果,礦冶工程,第25卷,第4期,第30-33頁(2005)。
3.盧彥旭,「水泥系輕質改良土工程性質之研究」,碩士論文,國立成功大學土木工程學研究所,台南(1995)。
4.胡霞、蔡強國、劉連友、李順江、蔡崇法、張光遠、朱遠達,「聚丙烯醯胺對黃土結皮形成的影響」,水土保持學報,第18卷,第4期,第65-68頁(2005)。
5.簡連貴,「水力砂土回填技術在造地工程之應用」,地工技術雜誌,第51期,第21-34頁(1995)。
6.邱奇昌,「砂土經水泥改良後之力學性質」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
7.蕭達鴻,「砂質土壤添加水泥材料工程特性之研究」,技術學刊,第11卷,第3期,第305-311頁(1996)。
8.張善同,「旋轉灌漿固化地基之技術」,中國鐵道出版社,北京(1984)。
9.鄭清江,「片狀砂土模擬水力填築後剪力特性之研究」,博士論文,國立中央大學土木工程學系,中壢(1996)。
10.張惠文,「中央大學地盤改良課程講義」,課程講義,國立中央大學土木工程學系,中壢(1992)。
11.陳榮嵩,「飽和砂土液化潛能與剪力功之初步研究」,碩士論文,國立中興大學土木工程研究所,台中(1991)。
12.陳俞蓁,「混凝對表面水濁度去除之研究」,碩士論文,國立成功大學環境工程系,台南(2002)。
13.陳彥奇,「含海水鹽性改良砂土之力學特性」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
14.事前混合処理工法技術マニュアル,財団法人沿岸開発技術研究センター,日本,(2000)。
15.曾凡剛,陳忠,劉曉,范曉媛,席英玉,含石英二元礦物複配物對聚丙烯醯胺吸附的協同效應,岩礦測試,第22卷,第2期,第134-136頁(2003)。
16.吳偉特,「臺灣地區砂性土壤液化潛能之初步分析」,土木水利季刊,第6卷,第2期,第39-70頁(1979)。
17.王維敏,中國北方旱地農業技術,中國農業出版社,北京,第155-166頁(1994)。
18.王冠彬,「含細料砂質改良土之力學性質」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
19.王小彬、蔡典雄,「土壤調理劑PAM的農用研究和應用」,植物營養與肥料學報,第6卷,第4期,第457- 463頁(2000)。
20.ASTM C127-01, “Standard test method for density, relative density(specific gravity), and absorption of coarse aggregate,” Annual Book of ASTM Standards, vol. 74.02., pp. 68-73(2001).
21.Benefield, L.D., Judkins, J.F., Jr., and Weand, B.L., “Process chemistry for water and wastewater treatment,” Preentice-Hall, Inc. Englewood Ciffs (1982).
22.Dupas, I.M., and Decker, A., “Static and dynamic properties of sand cement,” Journal of Geotechnical Engineering Division, ASCE, Vol. 105, No. GT3, June, pp. 799-817(1981).
23.Dentel, S.K., “Application of the precipitation-charge neutralization of coagulation,” Environ. Sci. Technol., Vol. 22, No. 7, pp. 825-832(1988).
24.Hoyer, O., and Schell, H., “Monitoring raw water quality and adjustment of treatment processes-experiences at the Wahnbach Reservoir,” Wat. Sci. Tech., Vol. 37, No. 2, pp. 43-48 (1998).
25.Imai, G., “Experimental studies on sedimentation mechanism and sediment formation of clay materials,” Soil and Foundations, Vol. 21, No. 1, pp. 7-20(1981).
26.Ishihara, K., “Liquefaction and flow failure during earthquakes,” Geotechnique, Vol. 43, No. 3, pp. 351-415(1993).
27.Ismail, M.A., Joer, H.A., Sim, W.H., and Randolph, M.F., “Effect of cement type onshear behavior of cemented calcareous soil,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 6, pp. 520-529(2001).
28.Kayode T.O., and Gregory, J., “A new technique for monitoring alum sludge conditioning,” Wat. Res., Vol. 22, No. 1, pp. 85-90 (1986).
29.La Mer, V.K., “Coagulation symposium introduction,” Jour. Colloid Sci., Vol. 19, pp. 291-293 (1964).
30.Lee, K., and Seed, H.B., “Cyclic Stress Condition Causing Liquefaction of Sand,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.93, No. SM1, pp.47-70(1967).
31.Ladd, R.S., “Specimen preparation and liquefaction of sands,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 110, No. GT10, pp. 1180-1184 (1974).
32.Placzek, D., “Methods for the calculation of settlements due to ground-water lowering,” Proceedings of the Twelfth International Conference on Soil Mechanics and Foundation Engineering, Rio De Janeiro, Vol. 3, pp. 1813-1818(1989).
33.Seed, H.B., and Idriss, I.M., “Simplified procedure for evaluating soil liquefaction potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1249-1273 (1971).
34.Seed, H.B., “Evaluation of soil liquefaction effects on level ground during earthquakes,” Liquefaction Problems in Geotechnical Engineering Session on Soil Dynamics Committee of Geotechnical Engineering Division, ASCE, pp. 1-104(1976).
35.Seed, H.B., and Booker, J.R., “Stabilization of Potential Liquefiable Sand D eposits Using Gravel Drains,” Journal of the Geotechnical Engineering Division, ASCE, Vo.103, No. GT7, pp. 757-768(1977).
36.Saxena, S.K. et al., “Liquefaction resistance of artificially cemented sand,” Journal of Geotechnical Engineering Division, ASCE, Vol. 114, No. 12, pp. 1395-1413(1988).
37.Tringale, P.T., “Soil identification in-situ using an acoustic cone penetrometer,” Ph.D. Dissertation, University of California, Berkeley (1983).
38.Umehara, Y., Zen, K., and Yoshizawa, H., “Design concept of treated ground by premixing method,” Geo-coast, 3-6, Sep., Yokohama, pp.519-524(1991).
39.Vaid, Y.P., and Chern, J.C., “Cyclic and monotonic undrained response of saturated sands,” National Convension Session on Advance in the Art of Testing Soils under Cyclic Loading, ASCE, Detroit, pp. 120-147(1985).
40.Yoshimi, Y., “Ductility criterion for evaluation liquefaction remediation measure,” Tsuchi-to-kiso JSSMFE, Vol. 36, No. 6, pp. 33-389(1990).
41.Wai, F.C. and Atef, F.S., “Constitutive equations for engineering materials,” Elsevier Science, pp. 122-123(1983).
42.Zen, K., “Development of premixing method as a measure to construct a liquefaction-free reclaimed land,” Tsuchi-to-kiso, JSSMFE, Vol. 36, No. 6, pp. 27-32(1990).