| 研究生: |
賴佳妤 Chia-yu Lai |
|---|---|
| 論文名稱: | Nonlinear Hyperbolic Systems of Conservation Laws in Symmetric Space-Application to Shallow Water Equations |
| 指導教授: | 洪盟凱 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 30 |
| 中文關鍵詞: | 質量守恆律 、非線性雙曲系統 、對稱空間 、淺水波方程 |
| 外文關鍵詞: | Conservation laws, Nonlinear hyperbolic systems, symmetric Space, shallow water equations |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,在分析Shallow water equation 時,通常會先探討伴隨科氏力的三維Navier-Stokes Equation,接著會忽略垂直數度分布,將三維的Navier-Stokes Equation 推導成二維的Shallow water equation,並同乘以一個旋轉矩陣,使二維的Shallow water equation 消去source term。可在對稱空間中做座標轉換,進而使二維的Shallow water equation 成為一雙曲型系統的conservation laws。
In this paper , we consider the following three dimension shallow water equations with Coriolis force then we derived the two dimension shallow water equation . And we transformed the two dimension shallow water equation 3by3 conservative system without source term . We can use the results in traditional hyperbolic systems of conservation laws to study the shock waves and rarefaction waves.
[1] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 2nd edition.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemati-
cal Sciences], 325. Springer-Verlag, Berlin, 2005.
[2] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm.
Pure Appl. Math. 18 (1965), pp. 697-715.
[3] Jonathan Goodman, Zhouping Xin, Viscous Limits for Piecewise Smooth Solutions to
System of Conservation Laws, Arch. Rational Mech. Anal. 121 (1992), pp. 235-265.
[4] Benoit Cushman-Roisin,Jean-Marie Beckers, Introduction to Geophysical Fluid Dynamics,
(2007).
[5] J. M. Hong, C. H. Hsu, Y. C. Su, Global solutions for initial-boundary value problem of
quasilinear wave equations, J. Di. Equ. 245 (2008), pp. 223-248.
[6] P. D. Lax, Hyperbolic system of conservation laws, II, Comm. Pure Appl. Math. 10 (1957),
pp. 537-566.
[7] J. Smoller, Shock Waves and Reaction Diusion Equations, Springer-Verlag, New York,
Berlin (1983).
[8] B. Whitham, Linear and nonlinear waves. New York, John Wiley, 1974.