| 研究生: |
徐睿謙 Jui-Chien Hsu |
|---|---|
| 論文名稱: |
用於高速成像通訊系統之不同速率編碼 Coding with various rates for the high speed imaging communication system |
| 指導教授: |
魏瑞益
Ruey-Yi Wei |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 高速成像通訊系統 、編碼 |
| 外文關鍵詞: | high speed imaging communication system, coding |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們設計出一套應用於高速成像通訊系統中的編碼。我們考慮傳輸資料頁中容易因光學系統的像差或失焦造成誤判的圖形,並且從最容易誤判的圖形開始依序刪除,建立出各種不同速率的編碼表。在訊號實際傳輸前,先傳送測試訊號,接收端接收測試訊號後即可判斷會出錯的圖形,再根據事先建立好的編碼表中,選擇最合適的編碼進行傳輸。
In this thesis, we design a set of codes for high speed imaging communication system. We consider the pictures that are easily misjudged due to aberrations or defocus of the optical system in the transmission data page, and delete the pictures that are most likely to be misjudged in order, and establish coding tables of various rates. Before the actual transmission of the signal, the test signal is sent first. After the receiver receives the test signal, it can judge the wrong patterns, and then select the most suitable code for transmission according to the pre-established code table.
參考文獻
[1] S. F. B. Morse, Samuel FB Morse (Cambridge University Press, Cambridge, 2014).
[2] E. S. Grosvenor, and M. Wesson, Alexander Graham Bell (New Word City, Boston, 2016).
[3] R. Noé, Essentials of modern optical fiber communication (Springer, 2010).
[4] S. Gupta, Textbook on optical fiber communication and its applications (PHI Learning Pvt. Ltd., 2018)
[5] 陳震瑜, “高速成像通訊系統可行性之研究” ,國立中央大學光電科學工程學系, 碩士論文, 九月, 2021.
[6] Y. Huang, E.-L. Hsiang, M.-Y. Deng, L. S. Wu, and Applications, “Mini-LED, MicroLED and OLED displays: Present status and future perspectives,” Light Sci. Appl. 9, 1-16 (2020)
[7] P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. J. O. e. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25, 1193-1201 (2017).
[8] X. Liu, R. Lin, H. Chen, S. Zhang, Z. Qian, G. Zhou, X. Chen, X. Zhou, L. Zheng, and R. J. A. P. Liu, “High-bandwidth InGaN self-powered detector arrays toward MIMO 69 visible light communication based on micro-LED arrays,” ACS Photonics ,6, 3186-3195 (2019).
[9] M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, and I. H. J. P. R. White, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5, A35-A43 (2017).
[10] S. Motwani, “Tactical Drone for Point-to-Point data delivery using Laser-Visible Light Communication (L-VLC),” in 2020 3rd International Conference on Advanced Communication Technologies and Networking(CommNet)(IEEE2020), pp. 1-8.
[11] L. Wang, Z. Wei, C.-J. Chen, L. Wang, H. Fu, L. Zhang, K.-C. Chen, M.-C. Wu, Y. Dong, and Z. J. P. R. Hao, “1.3 GHz EO bandwidth GaN-based micro-LED for multi-gigabit visible light communication,” Photonics Res. 9, 792-802 (2021).
[12] S. Zhang, Z. Wei, Z. Cao, K. Ma, C.-J. Chen, M.-C. Wu, Y. Dong, and H. Y. Fu, “A High-Speed Visible Light Communication System Using Pairs of Micro-size LEDs,” IEEE Photonics Technol. Lett. (2021).
[13] Zeiss Microscopy, “What Affects the Point Spread Function ?,” https://bitesizebio.com/22166/a-beginners-guide-to-the-point-spread-function-2/
[14] T. R. Corle and G. S. Kino, “Introduction of the Point Spread Function ,” https://www.sciencedirect.com/topics/engineering/point-spread-function
[15] X. Ding, Y. Fu, J. Zhang, Y. Hu, and S. Fu, “An Approach to Measuring the Point Spread Function of the Confocal Raman Microscope,” Applied Spectroscopy 74, 1230- 1237 (2020).
[16] J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 2002)
[17] P. Mouroulis, and J. Macdonald, Geometrical optics and optical design (Oxford University Press, USA, 1997).