跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱仕晟
Shih-chen Chiou
論文名稱: 螢光粉特性及封裝結構造成白光LED內部溫度之異常分布
Irregular temperature distribution inside white light LED related to characteristics of phosphor and package structures
指導教授: 鍾德元
Te-yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學研究所碩士在職專班
Executive Master of Optics and Photonics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 79
中文關鍵詞: 發光二極體螢光粉溫度分布有限元素分析
外文關鍵詞: LED, phosphor, temperature distribution, FEA analysis
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用發光二極體的光源特性(Light Emitting diode, LED),建立半球殼螢光粉封裝的熱功率密度分佈數值模型,並以蒙地卡羅法(Monte Carlo method)解決其他封裝結構數值模型的應用問題。再以有限元素分析(finite element analysis, FEA)軟體模擬LED的溫度分布,針對LED操作的電功率、功率轉換效率、螢光粉的量子效率與封裝膠的熱傳導係數作參數掃描分析。最後改變封裝的幾何結構,以半球殼封裝(Remote-dome phosphor package)、圓形平板封裝(Circular plate package)、半球封裝(Half-dome phosphor package)與表面封裝(Conformal coating package)為主,探討LED的電性、封裝的材料與幾何對LED溫度分布的影響。


    This research uses the properties of LED light sources to build a numerical model of the thermal power density for remote-dome phosphor package. Monte Carlo method is applied to solve the thermal power density for the other phosphor packaging method. Finite element analysis software is used after to simulate the temperature distribution of LEDs to analyze with scanning the parameters of electric power, power efficiency, and quantum efficiency of phosphor and the thermal conductivity of the adhesive used. Furthermore, the geometrical structure of the phosphor packaging is change. The packaging methods are based on remote-dome, circular plate, half-dome and conformal coating. How the temperature distribution in LEDs will affected by electric properties, packaging material and geometrical structure are discussed in this research as well.

    目錄 摘要 i Abstract ii 致謝 iii 圖目錄 vi 表目錄 viii 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 基本原理 4 2-1 發光二極體基本原理 4 2-2 螢光粉發光原理 6 2-2-1 螢光粉之能量轉換效率 7 2-2-2 LED黃光光譜之特徵波長與等效史托克轉換效率 8 2-2-3 比爾定律(Beer’s law) 10 2-2-4 螢光粉膠體之等效吸收係數 11 2-3 LED能量轉換過程 12 2-4 熱傳遞原理 13 2-4-1 熱傳導 13 2-4-2 熱對流 14 2-4-3 熱輻射 15 2-5 螢光粉膠體之熱功率密度分布函數與熱擴散方程式 15 第三章 等效LED熱傳導模型 18 3-1 引言 18 3-2 ASAP光學設計流程 19 3-2-1 LED光學模型之物件幾何與光學參數說明 21 3-3 COMSOL有限元素分析流程 23 3-3-1 等效LED熱傳導模型設定 24 3-3-2 熱傳導模型之LED電性與熱特性參數說明 25 3-3-3 蒙地卡羅方法之螢光粉封裝熱功率密度分布適用性驗證 27 第四章 數值模擬與分析 33 4-1 引言 33 4-1-1 LED電功率參數變化之分析 33 4-1-2 熱傳導係數參數變化之分析 35 4-1-3 功率轉換效率參數變化之分析 37 4-1-4 螢光粉的量子效率參數變化之分析 40 4-2 半球殼螢光粉封裝幾何結構參數變化之分析 41 4-2-1 圓形平板螢光粉封裝幾何結構參數變化之分析 46 4-2-2 半球螢光粉封裝幾何結構參數變化之分析 50 4-2-3 螢光粉表面封裝幾何結構參數變化之分析 52 4-3 LED晶片發光面積大小對螢光粉封裝溫度之影響 54 第五章 實驗與模擬結果之分析與比較 57 5-1 引言 57 5-2 實驗架構與模擬設定 57 5-3 實驗與模擬結果分析 59 第六章 結論 61 附錄一 LED光學模型程式設計範例 64

    [1] M.-H. Chang, D. Das, P. V. Varde, and M. Pecht. (2012, Light emitting diodes reliability review. Microelectronics Reliability 52(5), 762-782.
    [2] N. Chen, "Numerical Simulation and Experimental Researches on the LED Reliability under Temperature Loading," Appl. Math, vol. 6, pp. 775-779, 2012.
    [3] J. H. Hwang, Y. D. Kim, J. W. Kim, S. J. Jung, H. K. Kwon, and T. H. Oh, "Study on the effect of the relative position of the phosphor layer in the LED package on the high power LED lifetime," physica status solidi (c), vol. 7, pp. 2157-2161, 2010.
    [4] X. Luo and R. Hu, "Calculation of the phosphor heat generation in phosphor-converted light-emitting diodes," International Journal of Heat and Mass Transfer, vol. 75, pp. 213-217, 2014.
    [5] C. Sommer, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, G. Leising, et al., "A detailed study on the requirements for angular homogeneity of phosphor converted high power white LED light sources," Optical Materials, vol. 31, pp. 837-848, 2009.
    [6] S. J. Lee, "Analysis of light-emitting diodes by Monte Carlo photon simulation," Applied Optics, vol. 40, pp. 1427-1437, 2001.
    [7] N. R. Taskar, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D. Dorman, et al., "Quantum-confined-atom-based nanophosphors for solid state lighting," in Optical Science and Technology, SPIE's 48th Annual Meeting, 2004, pp. 133-141.
    [8] A. Kitai, Luminescent materials and applications vol. 25: John Wiley & Sons, 2008.
    [9] S. Shionoya, W. M. Yen, and T. Hase, Phosphor handbook vol. 1: CRC press Boca Raton, FL, 1999.
    [10] 郭浩中與郭守義, LED原理與應用第二版:五南文化事業, 2012.
    [11] J. Mitschele, "Beer-Lambert Law," Journal of Chemical Education, vol. 73, p. A260, 1996.
    [12] J. Houghton, The physics of atmospheres: Cambridge University Press, 2002.
    [13] H.-y. Ho, "The study of optical modeling of YAG phosphor for white light LED," 2007.
    [14] F. Incropera and D. DeWitt, "Introduction to heat transfer," 1985.
    [15] J. M. Palmer and B. G. Grant, The art of radiometry: SPIE Press Bellingham, 2010.
    [16] B. Fan, H. Wu, Y. Zhao, Y. Xian, and G. Wang, "Study of phosphor thermal-isolated packaging technologies for high-power white light-emitting diodes," Photonics Technology Letters, IEEE, vol. 19, pp. 1121-1123, 2007.
    [17] J.-G. Chang, C.-Y. Lin, C.-C. Hwang, and R.-J. Yang, "Optical design and analysis of LCD backlight units using ASAP," Opt. Eng. Mag, vol. 82, pp. 75-89, 2003.
    [18] "Cree® EZ700-n LED Data Sheet."
    [19] " GRMSTONE."
    [20] M. Maaspuro and A. Tuominen, "Thermal Simulations of a LED Light Using COMSOL Multiphysics," in Proceedings of the 2012 COMSOL Conference in Milan.
    [21] M. Zachau, D. Becker, D. Berben, T. Fiedler, F. Jermann, and F. Zwaschka, "Phosphors for solid state lighting," in Integrated Optoelectronic Devices 2008, 2008, pp. 691010-691010-8.
    [22] Q. Mu, S. Feng, and G. Diao, "Thermal conductivity of silicone rubber filled with ZnO," Polymer composites, vol. 28, pp. 125-130, 2007.
    [23] C.-C. Sun, Y.-Y. Chang, T.-H. Yang, T.-Y. Chung, C.-C. Chen, T.-X. Lee, et al., "Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy," Journal of Solid State Lighting, vol. 1, pp. 1-17, 2014.
    [24] R. Mueller-Mach, G. O. Mueller, and M. R. Krames, "Phosphor materials and combinations for illumination-grade white pcLEDs," in Optical Science and Technology, SPIE's 48th Annual Meeting, 2004, pp. 115-122.
    [25] M. Kasori and F. Ueno, "Thermal conductivity improvement of YAG added A1N ceramics in the grain boundary elimination process," Journal of the European Ceramic Society, vol. 15, pp. 435-443, 1995.

    QR CODE
    :::