跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐惟祥
Wei-Shiang Xu
論文名稱: 液滴在完全潤濕表面之擴張行為:MDPD 模擬研究
Spreading Behavior of Drops on a Total Wetting Surface:MDPD Simulation
指導教授: 曹恆光
Heng-Kuang Tsao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 110
中文關鍵詞: 完全潤濕多體耗散粒子動力學前驅膜潤濕現象液滴擴張
外文關鍵詞: Tanner's law, spontaneously spreading, many-body dissipative particle dynamics simulation
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當一顆液滴放置在固體表面上而開始自發性擴張,我們可以把這種潤濕現象歸類為完全潤濕。典型的例子如矽油在各種不同表面上連續的擴張行為,矽油液滴擴張半徑的變化與時間的關係則可以用Tanner's law來描述( R(t)~t^n,n=0.1 )。本研究使用多體耗散粒子動力學法,模擬在飽和蒸汽系統以及非滑移邊界條件下,液滴在完全潤濕表面上的擴張行為,並分別探討擴張系數、表面粗糙性質的改變對液滴擴張行為之影響。
    模擬過程中,在平滑表面上液滴將會快速的自發性擴張,其擴張半徑將會隨著時間逐漸增加,而液滴接觸角將會隨時間逐漸下降。結果發現在液滴擴張的過程中,會有前驅膜的產生導致在量測擴張半徑時與Tanner's law不合,且隨著擴張係數上升其指數關係會有增加的趨勢。所以當我們將前驅膜的影響給去除時,液滴自發擴張的行為就與Tanner's law吻合,不受擴張係數而改變。而在粗糙表面上,液滴的擴張的速度明顯慢於平滑表面,其擴張半徑與接觸角的變化一樣遵循Tanner's law,並發現具有粗糙度的表面將會有效減緩前驅膜的生成,且粗糙孔洞大小的增加將會對前驅膜的擴張產生更大的阻礙。而在長時間下更可以發現,擴張後期因為大量的液滴粒子卡進孔洞中,此時液滴變得非常薄且擴張的速度將會非常緩慢。
    我們在粗糙與平滑表面上的液滴施一固定方向的力,液滴在垂直施力方向上的擴張行為一樣遵守Tanner's law的描述,並且有前驅膜的生成。在平滑表面上液滴因施力開始流動,而液滴後端會因為沒有遲滯而滑動,因為在施力方向上,液滴流動的速度大於前驅膜生成的速度,因此看不到前驅膜的生成。此外,粗糙表面上則因為粗糙度具有遲滯並產生毛細力阻止液滴後端滑動。液滴的流動長度與時間的指數關係將會受到橫向前驅膜生成而受到影響,且當表面具有粗糙性質時,將會更加緩慢。


    Liquid drops spontaneously spreading on a solid surface is referred to as the total wetting phenomenon. A typical example is the continuous expansion of a silicon drop on various surfaces. The time evolution of the drop radius can be described by the power law r(t) ∼ tn with the exponent 1/10, known as Tanners law. In this work, the spreading dynamics of a nanodrop on a total wetting surface under saturated humidity and no-slip condition has been explored by many-body dissipative particle dynamics simulation. The influences of surface roughness and wettability in terms of spreading coefficient on the spontaneous spreading behavior are studied.
    It is found that the exponent n is 0.2 on smooth surface, and the exponent grows with increasing the spreading coefficient. The reason for the difference with Tanner’s law is that the formation of precursor film with the drop spreading process. As we remove the effect of the precursor film, the drop radius and contact angle behavior agree with Tanner’s law and the spreading law is independent of the spreading coefficient. In addition, The drop spreading velocity on rough surface is lower than that on smooth surface and the spreading process also follow Tanner’s law. It shows the surface roughness will prevent the growing of the precursor film and the resistance rises with increasing the cavity size. Furthermore, the drop spreading velocity is significantly lower and the drop becomes very thin for a long time because the most of the liquid beads stuck in the cavity.
    The forced spreading that is similar to the thin film flow on the surface under external force are investigated as well. As a result, the drop spreading motion which is vertical to external force also consistent with Tanner’s law and the precursor film is produced in the spreading process with this direction. On the forced direction, the rear part of the liquid drop will slide on smooth surface due to without surface roughness that can make pinning force to impede the movement of the contact line. In contrast, the rear part of the liquid drop will pinning on rough surface. Moreover, the precursor film can’t be observed on forced direction, since the forced flow velocity is faster than the velocity of expansion with precursor. In addition, the flow velocity with the forced direction will be affected by the precursor and the surface roughness will make the flow velocity significant
    slower.

    摘要 I Abstract II 致謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 部分潤濕與完全潤濕表面 1 1-2 完全潤濕表面的自發性擴張 1 1-3 表面粗糙度對潤濕行為的影響 4 1-4 研究動機 8 第二章 潤濕現象的基本原理 9 2-1 部分潤濕現象 9 2-1-1 楊氏方程式( Young’s equation ) 9 2-2 完全潤濕 (Total wetting) 12 2-2-1 Tanner’s Law 12 2-3 粗糙表面與遲滯行為 13 2-3-1 溫佐方程式 ( Wenzel’s equation ) 14 2-3-2 卡西方程式 (Cassie equation) 15 2-3-3 接觸角遲滯的定義 17 2-3-4 接觸角遲滯的量測方法 17 2-3-5 接觸角遲滯的成因 20 第三章 分子模擬原理與方法 23 3-1 多體耗散粒子動力學(Many-body Dissipative Particle Dynamics) 23 3-2 MDPD原理 25 3-2-1 MDPD作用力 25 3-2-2 噪訊與時間尺度 29 3-2-3 弗洛里-哈金斯理論(Flory-Huggins Theory) 30 3-2-4 長度、速度、時間尺度的無因次化 32 3-2-5 積分法求解 33 3-2-6 週期性邊界條件 34 3-2-7 Cell List 表列法 36 3-3 模擬系統與參數 36 3-3-1 系統基本參數設定 37 3-3-2 粒子的設定 38 3-4 無滑移邊界條件(No-Slip Boundary Condition) 40 第四章 液滴在平滑表面的完全潤濕行為 44 4-1 完全平滑表面上液滴潤濕行為 44 4-2 完全平滑表面下液滴之完全潤濕行為 47 4-3 平滑表面下前驅膜對完全潤濕行為的影響 51 第五章 液滴在粗糙表面的完全潤濕行為 58 5-1 粗糙表面下液滴之完全潤濕行為 60 5-2 粗糙表面下前驅膜對完全潤濕行為的影響 63 5-3 液滴在粗糙表面長時間的擴張 67 第六章 受外力液滴之完全潤濕行為 70 6-1 平滑表面上之擴張行為 70 6-2 粗糙表面上之擴張行為 80 第七章 結論 88 第八章 參考文獻 90

    [1] P.G. de Gennes, “Wetting: statics and dynamics.” Rev. Mod. Phys. 57, 827 (1985).
    [2] L. H. Tanner, “The spreading of Silicone oil Drops on Horizontal Surfaces”, Journal of Physics D: Applied Physics. 12, 1473–1484 (1979).
    [3] G. HE and N. G. Hadjiconstantinou, “A molecular view of Tanner’s law: molecular dynamics simulations of droplet spreading.” J. Fluid Mech. 497, 123-132 (2003).
    [4] Y. C. Liao, Y. C. Li, and H. H. Wei, “Drastic Changes in Interfacial Hydrodynamics due to Wall Slippage: Slip-Intensified Film Thinning, Drop Spreading, and Capillary Instability.” Phys. Rev. Lett. 111, 136001 (2013)
    [5] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N Wang, F. Xia, and L. Jiang , “Petal effect: a superhydrophobic state with high adhesive force.” Langmuir 24, 4114-4119 (2008)
    [6] A. W. Adamson, and A. P. Gast. “Physical chemistry of surfaces.” Wiley 400-408 (1967)
    [7] A. Hennig, K. Grundke, R. Frenzel, and M. Stamm, “Ultrahydrophobic surfaces: Relation between roughness and contact angle hysteresis.” Tenside Surfact. Det. 39, 243-246 (2002)
    [8] A. K. Metya, S. Khan, and J. K. Singh. “Wetting Transition of the Ethanol–Water Droplet on Smooth and Textured Surfaces.” J. Phys. Chem. C 118, 4113-4121 (2014)
    [9] B. Kong, and Xiaozhen Yang. “Dissipative particle dynamics simulation of contact angle hysteresis on a patterned solid/air composite surface.” Langmuir 22, 2065-2073 (2006)
    [10] Y. Wang, and S. Chen. “Numerical study on droplet sliding across micropillars.” Langmuir 31, 4673-4677 (2015)
    [11] T. Young, “An essay on the cohesion of fluids.” Royal Society 95, 65-87 (1805)
    [12] N. K. Adam, “Use of the Term ‘Young's Equation’for Contact Angles.” Nature 180, 809-810 (1957)
    [13] K. Efimenko, W. E. Wallace and J. Genzer, “Surface Modification of Sylgard-184 Poly(dimethyl siloxane) Networks by Ultraviolet and Ultraviolet/Ozone Treatment.”, Journal of Colloid and Interface Science 254, 306-315 (2002)
    [14] W. S. Bae, A. J. Convertine, C. L. McCormick and M. W. Urban, “Effect of Sequential Layer-by-Layer Surface Modifications on the Surface Energy of Plasma-Modified Poly(dimethylsiloxane)”, Langmuir 23(2), 667-672 (2007)
    [15] S. Lee and J. Voros, “An Aqueous-Based Surface Modification of Poly(dimethylsiloxane) with Poly(ethylene glycol) to Prevent Biofouling.” Langmuir 21(25), 11957-11962 (2005)
    [16] S. Demming, C. Lesche, H. Schmolke, C. P. Klages and S. Büttgenbach, “Characterization of Long-Term Stability of Hydrophilized PEG-grafted PDMS Within Different Media for Biotechnological and Pharmaceutical Applications.” Physica Status Solidi (a) 208, 1301-1307 (2011)
    [17] Z. Zhang, X. Feng, Q. Luo and B. F. Liu, “Environmentally Friendly Surface Modification of PDMS Using PEG Polymer Brush.” Electrophoresis 30, 3174-3180 (2009)
    [18] V. Sharma, M. Dhayal, Govind, S. M. Shivaprasad, and S. C. Jain, “Surface Characterization of Plasma-Treated and PEG-Grafted PDMS for Micro Fluidic Applications.” Vacuum 81, 1094-1100 (2007)
    [19] F. Garbassi, M. Morra, E. Occhiello, and F. Garbassi, “Polymer surfaces: from physics to technology.” Wiley (1998)
    [20] R. N. Wenzel, “Resistance of solid surfaces to wetting by water.” Ind. Eng. Chem. 28, 988-994 (1936)
    [21] A. B. D. Cassie, and S. Baxter. “Wettability of porous surfaces.” T. Faraday Soc. 40, 546-551 (1944)
    [22] Y. Uyama, H. Inoue, K. Ito, A. Kishida, and Y. Ikada, “Comparison of different methods for contact angle measurement.” J. Colloid Interf. Sci .141, 275-279 (1991)
    [23] V. Berejnov, and R. E. Thorne. “Effect of transient pinning on stability of drops sitting on an inclined plane.” Phys. Rev. E 75, 066308 (2007)
    [24] O. N. Tretinnikov, and Y. Ikada. “DynamicWetting and Contact Angle Hysteresis of Polymer Surface Studied with the Modified Wilhelmy Balance Method.” Langmuir 10, 1606-1614 (1994)
    [25] J. F. Joanny, and P. D. Gennes. “A model for contact angle hysteresis.” J. Chem. Phys. 81, 552-562 (1984)
    [26] S. Yamada, and J. Israelachvili. “Friction and adhesion hysteresis of fluorocarbon surfactant monolayer-coated surfaces measured with the surface forces apparatus.” J. Phy. Chem. B 102, 234-244 (1998)
    [27] S. J. Hong, F. M. Chang, T. H. Chou, S. H. Chan, Y. J. Sheng, and H. K. Tsao, “Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning.” Langmuir 27, 6890-6896 (2011)
    [28] P. J. Hoogerbrugge, and J. M. V. A. Koelman. “Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics.” Europhys. Lett. 19, 155 (1992)
    [29] R. D. Groot, and P. B. Warren. “Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation.” J. Chem. Phys. 107, 4423 (1997)
    [30] I. Pagonabarraga, and D. Frenkel. “Dissipative particle dynamics for interacting systems.” J. Chem. Phys. 115 , 5015-5026 (2001)
    [31] S. Y. Trofimov, E. L. F. Nies, and M. A. J. Michels. “Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures.” J. Chem. Phys. 117, 9383-9394 (2002)
    [32] P. B. Warren, “Vapor-liquid coexistence in many-body dissipative particle dynamics.” Phys. Rev. E 68, 066702 (2003)
    [33] P. Espanol, and Patrick Warren, “Statistical mechanics of dissipative particle dynamics.” Europhys. Lett. 30, 191-196 (1995)
    [34] M. P. Allen, and D. J. Tildesle, “Computer simulation of liquids.” Oxford (1989)
    [35] R. D. Groot, and T. J. Madden, “Dynamic simulation of diblock copolymer microphase separation.” J. Chem. Phys. 108, 8713-8724 (1998)
    [36] D. C. Rapaport. “The art of molecular dynamics simulation.” Cambridge (2004)
    [37] E. Lauga, M. Brenner, and H. Stone. “Microfluidics: the no-slip boundary condition.” Springer Berlin Heidelberg 1219-1240 (2007)
    [38] T. D. Blake. “Slip between a liquid and a solid: DM Tolstoi's (1952) theory reconsidered.” Colloid Surface 47, 135-145 (1990)

    QR CODE
    :::