| 研究生: |
林祐亦 Yu-Yi Lin |
|---|---|
| 論文名稱: |
礫石型土石流之逕流啟動實驗及現地監測 Field Monitoring and Experimental Study on Runoff-Induced Gravelly Debris Flows |
| 指導教授: |
周憲德
Hsien-Ter Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | 土石流 、逕流啟動 、水流功率 、水槽實驗 、火炎山 |
| 外文關鍵詞: | debris flow, runoff, stream power, flume experiment, Huoyenshan |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究於苗栗縣三義鄉火炎山一號坑,藉由建立現地監測影像進行土石流運動特性分析,包括土石流流動歷程、地貌變化、土石流平均速度及各斷面坡度與高程分析。本研究彙整 2016 年至2022 年間各土石流事件之降雨資料,有效累積雨量(含前期降雨)與土石流流動距離之間具有高度關聯性。為探究火炎山現地因崖錐堆積及溪床土石堆積受降雨引發土石流之流動歷程與逕流相關特性,本研究於室內實驗水槽進行逕流啟動實驗。在不同底床配置高度中,分析流量及坡度的條件下,顆粒之流動型態、顆粒流運動特性、堆積體破壞歷程及水流功率與堆積體破壞後各參數間之相關性。
This study was conducted at the No.1Gully of Houyenshan in Sanyi Township, Miaoli County. The research focused on analyzing the characteristics of debris flow movement, including the flow process, geomorphic changes, average velocity, and cross-sectional analysis, by establishing on-site monitoring images. To investigate the debris flow movement process and the characteristics related to rainfall-induced debris flows in the local area, the study compiled rainfall data from various debris flow events between 2016 and 2022. There was a significant correlation between the accumulated effective rainfall (including antecedent rainfall) and the distance of debris flow movement. To further explore the debris flow movement processes and runoff-related characteristics caused by cliff cone accumulation and streambed sediment accumulation at Houyenshan, small-scale indoor experiments were conducted using a flume. The
experiments were carried out with different bed configurations, analyzing the flow patterns of particles, particle movement characteristics, the process of deposit disruption, and the correlations among stream power and various deposit parameters.
[1] 行政院農業委員會水土保持局 (2017),「水土保持手冊」。
[2] 張振唐 (2022),「降雨及逕流引致礫石型土石流之現地監測及實驗分析」,國立中央大學土木工程研究所,碩士論文。
[3] 羅傳鈞 (2021),「火炎山土石流監測及逕流引致土石流實驗」,國立中央大學土木工程研究所,碩士論文。
[4] 邱奕旭 (2020),「土石流現地監測與地聲頻譜分析」,國立中央大學土木工程研究所,碩士論文。
[5] 彭楙鈞 (2019),「火炎山土石流現地監測及土石流粒徑分析」,國立中央大學土木工程研究所,碩士論文。
[6] 蔡勝棠 (2018),「火炎山土石流之降雨特性及地貌演變分析」,國立中央大學土木工程研究所,碩士論文。
[7] 陳威宏 (2017),「土石流現地監測與流動型態分析」,國立中央大學土木工程研究所,碩士論文。
[8] 凌杰民 (2018),「不同渠床堆積形態下滲流引致土石流之歷程分析」,國立中央大學土木工程研究所,碩士論文。
[9] 陳韋利、林政侑、林昭遠 (2014),「以逕流歷線建置土石流預警系統之研究」,中華民國水土保持學報,46(1),901-916。
[10] 周憲德、楊祥霖、李璟芳、黃郅軒 (2013),「火炎山土石流之流動型態與地聲特性分析」,中華民國水土保持學報,46(2),71-78。
[11] 周憲德、楊祥霖、李璟芳、黃郅軒 (2013),「火炎山土石流之流動型態與地聲特性分析」,中華民國水土保持學報,46(2),71-78。
[12] 周憲德、李璟芳、黃郅軒、張友龍 (2012),「礫石型溪溝崩塌及土石流監測與流動特徵分析」,中華民國力學學會第三十六屆全國力學會議。
[13] 李明熹 (2006),「土石流發生降雨警戒分析及其應用」,國立成功大學水利及海洋工程研究所,博士論文。
[14] 詹錢登 (2000),「土石流概論」,科技圖書股份有限公司。
[15] 土石流防災資訊網-行政院農業委員會水土保持局。取自http://246.swcb.gov.tw。
[16] Coviello, V., Theule, J. I., Marchi, L., Comiti, F., Cavalli, M. and Arattano, M. (2019), “Deciphering sediment dynamics in a debris-flow catchment: insights from instrumental monitoring and high-resolution topography”, 7th International Conference on Debris-Flow Hazards Mitigation.pp.103-110
[17] Chow, V. T. (1959), “Open-channel hydraulics”, McGraw-Hill, New York.
[18] Cui, P. (1999), “Impact of debris flow on river chanel in the upper reachesof the Yangtze River”, International Journal of Sediment Research, Vol. 14, pp. 201–203.
[19] Cui, P., Guo, X., Yan, Y., Li, Y. and Ge, Y. (2018) , “Real-time observation of an active debris flow watershed in the Wenchuan Earthquake area”, Geomorphology, Vol. 321, pp.153–166.
[20] Cui, P., Zeng, C. and Lei, Y. (2015), “Experimental analysis on the impact force of viscous debris flow”, Earth Surf. Process. Landforms, Vol.40, pp.1644-1655.
[21] Caine, N. (1980), “The Rainfall Intensity-During Control of Shallow Landslides and Debris Flows”, Geografiska Annaler, Vol.62, pp.23-27.
[22] Fan, R. L., Zhang, L. M., Wang, H. J. and Fan, X. M. (2018), “Evolution of debris flow activities in Gaojiagou Ravine during 2008–2016 after the Wenchuan earthquake”, Engineering Geology, Vol.235, pp.1-10.
[23] Fei, X. J. and Shu, A. P. (2004), “Movement Mechanism and Disaster Control for Debris Flow”, Tsinghua University Press: Beijing.
[24] Gregoretti, C., Degetto, M. and Boreggio, M. (2016), “GIS-based cell model for simulating debris flow runout on a fan”, J. Hydrol, Vol.534, pp.326–340.
[25] Hungr, O., Morgan, G.C. and Kellerhals, R. (1984), “Quantitative analysis of debris torrent hazards for design of remedial measures”, Canadian Geotechnical Journal, Vol.21, pp.663–677.
[26] Iverson, R. M. and Vallance, J. W. (2001), “New views of granular mass flows”, Geology, Vol.29, pp.115–118.
[27] Iverson, R. M. (1997), “The physics of debris flows”, Reviews of Geophysics, Vol.35, pp.245–296.
[28] Iverson, R. M., LaHusen, R. G., Major, J. and Zimmerman, C. L. (1994), “Debris flow against obstacles and bends: dynamics and deposits”, American Geophysical Union, Vol.75, pp.274.
[29] Kaki, T. (1954), “The experimental research for mud-flow”, J. JSECE, Vol.19, pp.1-6.
[30] Li, Y., Liu, J., Su, F., Xie, J. and Wang, B. (2015), “Relationship between grain composition and debris flow characteristics: a case study of the Jiangjia Gully in China”, Landslides, Vol.12, pp.19-28.
[31] Lanzoni, S., Gregoretti, C. and Stancanelli, L.M. (2017), “Coarse-grained debris flow dynamics on erodible beds”, Journal of Geophysical Research: Earth Surface, Vol.122, pp.592-614.
[32] McCoy, S. W., Kean, J. W, Tucker, G. E., Staley, D. M., and Coe, J. A. (2013), “Runoff-generated debris flows: Observations and modeling of surge initiation, magnitude, and frequencyr”, Journal of Geophysical Research: Earth Surface, Vol.118, pp.2190-2207.
[33] McArdell, B. (2016), “Field Measurements of Forces in Debris Flows at the Illgraben: Implications for Channel-Bed Erosion”, International Journal of Erosion Control Engineering, Vol. 9, No. 4, pp. 194-198.
[34] McArdell, B., Scheidl, C. and Rickenmann, D. (2015) , “Debris-flow velocities and superelevation in a curved laboratory channel”, Can. Geotech. J., Vol. 52, pp. 305-317.
[35] McClung, D. M. (2001), “Superelevation of flowing avalanches around curved channel bends”, Jourmnal of Geophysical Research, Vol.106, pp.16489-16498.
[36] Navratil, O., Liébault, F., Bellot, H., Travaglini, E., Theule, J., Chambon, G. and Laigle, D. (2013), “High-frequency monitoring of debris-flow propagation along the Real Torrent, Southern French Prealps”, Geomorphology, Vol.201, pp.157-171.
[37] Pan, H., Jiang, Y., Wang, J. and Ou, G. (2018) “Rainfall threshold calculation for debris flow early warning in areas with scarcity of data”, Nat. Hazards Earth Syst. Sci., Vol.18, pp.1395-1409.
[38] Prochaska, A. B., Santi, P. M., Higgins, J. D. and Cannon, S. H. (2008), “A study of methods to estimate debris flow velocity”, Landslides, Vol.5, pp.431–444.
[39] Qian, N. and Wang, Z. Y. (1984), “A preliminary study on the mechanism ofdebris flow”, Acta Geographica Sinica, Vol.39, pp.33-43.
[40] Pastorello, R., D'Agostino, V., Hürlimann, M.(2020) “Debris flow triggering characterization through a comparative analysis among different mountain catchments”, Catena, Vol.186.
[41] Rickenmann, D. and Zimmermann, M. (1993), “The 1987 debris flows in Switzerland: documentation and analysis”, Geomorphology, Vol.8, pp.175-189.
[42] Rickenmann, D. and Koch, T. (1997), “Comparison of debris flow modelling approaches”, Proceedings of the first international conference. ASCE, New York, pp.576–585.
[43] Scheidl, C. McArdell, B.W. and Rickenmann, D. (2014), “Debris-flow velocities and superelevation in a curved laboratory channel”, Canadian Geotechnical Journal, Vol.52, pp.1–13.
[44] de Haas, T. and van Woerkom, T. (2016), “Bed scour by debris flows: experimental investigation of effects of debris-flow composition”, Earth Surf. Process. Landforms, Vol.41, pp.1951-1966.
[45] Takahashi, T. (2009), “A Review of Japanese Debris Flow Research”, International Journal of Erosion Control Engineering, Vol.2, No.1.pp1-14.
[46] Takahashi, T. (1981), “Estimation of potential debris flows and their hazardous zones: Soft countermeasures for a disaster”, J. Natural Disaster Science, Vol.3, pp.57–89.
[47] Takahashi, T. (1978), “Mechanical characteristics of debris flow. J. Hydraulics Div”, ASCE, Vol.104, pp.1153–1169.
[48] Tani, I. (1968), “On debris flow (Yamatsunami)”, Water Science, Vol. 60, pp.106–126.
[49] VanDine, D.F. (1985), “Debris flow and debris torrents in the Southern Canadian Cordillera”, Canadian Geotechnical Journal, Vol.22, pp.44–68.