跳到主要內容

簡易檢索 / 詳目顯示

研究生: 朱薇如
WeiJu Chu
論文名稱: 製備均一粒徑有機無機核殼微小球
The preparation of monodisperse organic-inorganic core-shell spheres
指導教授: 陳暉
Hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 111
中文關鍵詞: 二氧化矽中空球光子晶體擴散Stober均一粒徑
外文關鍵詞: hollow sphere, monodisperse, diffusion, photonic crystal
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討具有均一粒徑之有機-無機核殼結構粒子。根據粒子大小,主要可分為均一粒徑之微米級與次微米球。
    關於製備微米級有機-無機均一粒徑粒子,主要以硬模版法,先以分散聚合法將苯乙烯單體(Styrene)合成實心內核粒子,透過聚乙烯吡咯烷酮(穩定劑)穩定粒子防止凝聚,將四乙氧基矽烷包覆在實心內核上。微米級不同粒徑大小的聚苯乙烯(PS)球可由調整乙醇在乙醇水溶液中的重量百分比而製備出。將PS球均勻分散在乙醇中,透過Stőber方法將四乙氧基矽烷(TEOS)包覆在PS球上,形成均一粒徑的PS-TEOS核殼結構粒子。隨著TEOS加入量的增加,外殼厚度也隨之增加。最後以高溫鍛燒,可製備出不同粒徑與殼厚的二氧化矽中空球,粒徑約在1~2 μm間。
    製備次微米級有機-無機均一粒徑粒子方法與前者相同,亦使用硬模版法進行製備。首先使用無乳化劑乳化聚合法,在高溫下製備均一粒徑聚苯乙烯次微米球作為內核。製備PS球過程中,在單體轉化率約96%時,加入不同種類矽烷,快速合成均一粒徑有機-無機核殼次微米球。所使用的矽烷種類包含四乙氧基矽烷, 甲基三乙氧基矽烷(MTES) ,二甲基二乙基矽烷(DMDES), 3-甲基丙烯酸基丙基三甲氧基矽烷(MPS)。所得之均一粒徑核殼次微米球,其球徑皆在180~200 nm。經水洗測試發現,特定矽烷MTES與PS球內核的結合性良好;透過TEM儀器觀測,發現PS球轉化率低時,核殼球粒徑擴大,認為是矽烷擴散進PS球內核所致。此外,改變加入矽烷單體的時間,亦可製備出均一粒徑的核殼結構粒子。對於在PS球特定轉化率下,提高添加的矽烷單體量,可增大均一粒徑次微米球之粒徑。此類核殼結構粒子透過毛細力驅動,可製備成光子晶體作為應用。


    The study was focused on the preparation of monodisperse organic-inorganic core-shell structures microspheres. According to the particles size, the preparations were divided into two parts: monodisperse microscale and submicroscale spheres.
    For the preparation of microscale monodisperse organic-inorganic particles, the core particles-styrene spheres were first produced by dispersion polymerization. With the help of polyvinylpyrrolidone, the phenomenon of particles aggregation were avoided, so the polystyrene(PS) spheres can be wrapped in tetraethoxysilane in the second step. Controlling the ethanol weight percent in ethanol solution affected the size of PS spheres. In the second step, the PS spheres were dispersed in ethanol with adding tetraethoxysilane step by step. After 24hrs, monodisperse PS-SiO2 structure was formed. The diameters of the core-shell particles raised up as the amount of tetraethoxysilane increased. The hollow spheres were obtained after taking the organic-inorganic particles to calcine under high temperature. The diameter range of hollow spheres diameter was 1~2μm.
    The method to synthesize submicroscale monodisperse organic-inorganic particles was similar to the way of producing microscale particles. Both the core parts were first prepared, and then silane was added to modify the organic core surface. For submicroscale organic-inorganic particles, different kinds of silane, including tetraethylsilane(TEOS), methyltriethoxysilane(MTES), dimethyldi-
    ethoxysilane(DMDES), 3-(Trimethoxysilyl)propyl methacrylate(MPS) were added during the polymerization of styrene by soap-free
    polymerization. The size of the organic-inorganic particles was about 180 nm to 210 nm. The core-shell structure was clearly observed under TEM. With the results of TGA and the TEM photograph indicating that silane were diffused into PS spheres. As the amount of silane increased, the diameter of core-shell particles increased, too. These organic-inorganic particles self-assembled photonic crystal after heating due to capillary force.

    摘要………………………………………………………I Abstract………………………………………………III 誌謝………………………………………………………V 目錄……………………………………………………VI 圖目錄……………………………………………....VIII 表目錄……………………………………………………XI 第一章 緒論 1 1-1 均一粒徑高分子球之簡介與文獻回顧 1 1-2 二氧化矽粒子之簡介與文獻回顧 3 1-3 中空球之簡介與文獻回顧 4 1-4 光子晶體之簡介與文獻回顧 5 1-5 研究動機及目的 7 第二章 實驗 8 2-1 實驗藥品 8 2-2 實驗儀器 9 2-3 實驗方法 10 2-3-1 單體精製 10 2-3-2 製備微米級核殼結構 10 2-3-2-1 以分散聚合法製備均一粒徑微米球 10 2-3-2-2 分階段加入矽烷進行sol-gel反應,製備均一粒徑核殼結構微米球 11 2-3-3 快速製備具不同核-殼結構之均ㄧ粒徑次微米球 12 2-3-3-1 聚苯乙烯與甲基丙烯酸共聚合高分子球製備流程 12 2-3-3-2 聚苯乙烯與甲基丙烯酸共聚合物-四乙氧基矽烷類等均一粒徑核殼球製備流程 13 2-3-3-3 製備不同轉化率之聚苯乙烯/甲基丙烯酸共聚合物與甲基三乙氧基矽烷之核/殼結構次微米球 13 2-3-3-4 增加矽烷劑量,製備聚苯乙烯/甲基丙烯酸共聚合物與甲基三乙氧基矽烷之核/殼結構次微米球 14 2-3-4 光子晶體之製備 14 2-3-5 中空球之製備 14 2-3-6 水洗離心 15 2-5 儀器分析 15 2-5-1 傅立葉轉換紅外線光譜儀(FTIR)測試條件 15 2-5-2 掃描式電子顯微鏡(SEM)測試條件 15 2-5-3 紫外-可見光光譜儀(UV-Vis)測試條件 16 2-5-4 動態粒徑分析儀(DLS)測試條件 16 2-5-5 穿透式電子顯微鏡TEM測試條件 16 2-5-6 熱重量分析儀(TGA)測試條件 17 第三章 結果與討論 18 3-1 均一粒徑微米球之製備與其粒徑對核殼結構之影響 18 3-1-1 製備均一粒徑聚苯乙烯PS球內核 18 3-1-2 製備均一粒徑聚苯乙烯-四乙氧基矽烷核殼球 19 3-1-3 製備均一粒徑中空球 31 3-2 具不同殼層厚度之中空球製備 36 3-2-1 製備均一粒徑聚苯乙烯-四乙氧基矽烷核殼球 36 3-2-2 製備均一粒徑中空球 41 3-3 鍛燒與恆溫時間對中空球之影響 46 3-3-1 恆溫時間對中空球之影響 46 3-3-2 升溫速率對中空球之影響 46 3-4 均一粒徑次微米球製備及表面改質之研究 49 3-4-1 以無乳化劑乳化聚合法製備均一粒徑PS球 49 3-4-2 以二階段加入法進行PS球表面改質 58 3-4-3 矽烷對聚苯乙烯球之包覆性 71 3-5 聚苯乙烯-甲基三乙氧基矽烷(PS-MTES)核殼結構包覆機制之研究 76 3-6 提高二階段單體添加量之研究 85 3-7 光子晶體之製備 92 3-7-1 具不同表面結構之次微米球對光子排列之影響 92 3-7-2 具不同內核大小之次微米球對光子晶體排列之影響 99 3-7-3 增加外殼改質量之次微米球對光子晶體排列之影響 102 第四章 結論 106 文獻回顧 108

    1. S. Kawaguchi, K. Ito, “Dispersion Polymerizaton,” Adv Polym Sci 175: 299–328, 2005
    2. A. J. Paine, et. al, “Dispersion Polymerization of Styrene in Polar Sovlent. 6. Influence of Reaction Parameters on Particle Size and Molecular Weight in Poly(N-vinylpyrro1idone)-Stabilized Reactions Macromolecules”, Macromolecules, 23, 3104-3109, 1990
    3. E. J. Keith, B. Barrett, Polym. J. 5, 259 (1973)
    4. S. Shen, et. al, J. Polym. Sci. Part A: Polym. Chem. 31, 1393, 1993
    5. S. Shen, et. al, J. Polym. Sci. Part A: Polym. Chem. 32, 1087, 1994
    6. S. J. Fang, et. Al, “Emulsifier-free emulsion copolymerization of styrene and acrylamide using an amphoteric initiator”, Colloid Polym Sci, 278:864-871, 2000
    7. 羅名譽,快 速 合 成 具 核 殼 結 構 之 均 ㄧ 粒 徑 次 微 米 球 與 其 表 面 改 質 之 特 性 研 究,中央大學碩士論文,2009年
    8. A. Schmid, et. al, “Polystyrene-Silica Nanocomposite Particles via Alcoholic Dispersion Polymerization Using a Cationic Azo Initiator, ” Langmuir, 22, 4923-4927, 2006
    9. H. Ahmad, et. al, “Synthesis of Biocompatible Sterically-Stabilized Poly(2-(methacryloyloxy) ethyl phosphorylcholine) Latexes via Dispersion Polymerization in Alcohol/ Water Mixtures, ” Langmuir, 25(19), 11442–11449, 2009
    10. V. H. Nguyen, et. al, ” Preparation of poly(vinyl pivalate) microspheres by dispersion polymerization in an ionic liquid and saponification for the preparation of poly(vinyl alcohol) with high syndiotacticity,” European Polymer Journal, 46, 2190–2198, 2010
    11. D. Nagao, et. al, “Preparation of Micrometer-Sized Polymer Particles with Control of Initiator Dissociation during Soap-Free Emulsion Polymerization,” Langmuir, 22, 10958-10962, 2006
    12. G. Kim, et. al, “ Effect of homogeneity of methanol/water/monomer mixture on the mode of polymerization of MMA: Soap-free emulsion polymerization versus dispersion polymerization, ” Polymer, 51, 1197–1205, 2010
    13. E. Rusen, et. al, “Obtaining of monodisperse particles through soap-free and seeded polymerization, respectively, through polymerization in the presence of C60,” Colloid Polym Sci, 288:769–776, 2010
    14. K. Nozawa, et. al, ” Smart Control of Monodisperse Sto1ber Silica Particles: Effect of Reactant Addition Rate on Growth Process,” Langmuir, 21, 1516-1523, 2005
    15. H. Nakabayashi, et. al, “Electrolyte-Added One-Pot Synthesis for Producing Monodisperse, Micrometer-Sized Silica Particles up to 7 μm, ” Langmuir, 26(10), 7512–7515, 2010
    16. Stőber. W, A. Fink, “Controlled growth of monodisperse silica spheres in the micro size range” Journal of Colloid and Interface Science, 26, p62-p69, 1968
    17. C. Graf, et. al, “A General Method To Coat Colloidal Particles with Silica,” Langmuir, 19, 6693-6700, 2003
    18. Y. Zhu, et. al, “PEGylated hollow mesoporous silica nanoparticles as potential drug delivery vehicles,” Microporous and Mesoporous Materials, 141, 199–206, 2011
    19. Y. Maa and L. Qi, “Solution-phase synthesis of inorganic hollow structures by templating strategies,” Journal of Colloid and Interface Science, 335, 1–10, 2009
    20. 任恆立, 二氧化矽中空球儲氫性能分析, 逢甲大學化學工程系碩士論文,2006年
    21. L. Zhang, et. al, “Hollow Silica Spheres: Synthesis and Mechanical Properties,” Langmuir, 25, 2711-2717, 2009
    22. M. Fujiwara, et. al, “Preparation of Hierarchical Architectures of Silica Particles with Hollow Structure and Nanoparticle Shells: A Material for the High Reflectivity of UV and Visible Light,” Langmuir, 26(9), 6561–6567, 2010
    23. L. Han, et. al, “Anionic surfactants templating route for synthesizing silica hollow spheres with different shell porosity,” Solid State Sciences, 13, 721-728, 2011
    24. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. ,58, 2059, 1987
    25. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. , 58, 2486 ,1987
    26. Z. Yu, et. al, “Uniform fluorescent photonic crystal supraballs generated from nanocrystal-loaded hydrogel microspheres,” J. Mater. Chem., 20, 6182–6188, 2010
    27. J.-F. Dechezellesa, et. al, “Inhibition and exaltation of emission in layer-controlled colloidal photonic architectures,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 373,1–5 ,(2011)
    28. A. Z. Khokhar, et. al, “ Photonic crystal heterostructures from self-assembled opals, ” Appl Phys A, 102: 281–287, (2011)
    29. Vishwas V. Hardikar, Egon Matijevi´c1, “Coating of Nanosize Silver Particles with Silica,” Journal of Colloid and Interface Science 221, 133–136 (2000)
    30. Xuefeng Song and Lian Gao, “Synthesis, Characterization, and Optical Properties of Well-Defined N-Doped, Hollow Silica/Titania Hybrid Microspheres,” Langmuir , 23, 11850-11856, 2007
    31. M. Agrawa, et. al, “Synthesis of Novel Tantalum Oxide Sub-micrometer Hollow Spheres with Tailored Shell Thickness,” Langmuir 2008, 24, 1013-1018
    32. W.-Y. CHIU, et. al, “Particle Size Distribution and Molecular Size Distribution of Polymers in Soap-Free Emulsion Polymerization of Styrene,” Journal of Applied Polymer Science, Vol. 42, 2787-2793 (1991)
    33. T. Yamamoto, et. al, “Growth mechanism of soap-free polymerization of styrene investigated by AFM,” Journal of Colloid and Interface Science, Vol. 297, Issue 1, Pages 112-121, 1 May 2006
    34. V. B. Celton, et. al, “Condensation of alkoxysilanes in alcoholic media: II. Oligomerization of aminopropylmethyldiethoxysilane and co-oligomerization with dimethyldiethoxysilane,“ Polym Int; 59: 1273–1281, 2010

    QR CODE
    :::