跳到主要內容

簡易檢索 / 詳目顯示

研究生: 任貽均
Yi-Jun Jen
論文名稱: 非均向性薄膜之光學特性研究
The study of optical properties of anisotropic films
指導教授: 李正中
Cheng-Chung Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 89
語文別: 中文
論文頁數: 100
中文關鍵詞: 非均向性薄膜雙折射Airy Formula柱狀結構表面電漿波全反射衰減法
外文關鍵詞: Airy Formula
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 從理論上的分析,只要測量垂直入射光以及某一角度傾斜入射光的反射率,我們就可以定出非均向性薄膜的三個主軸折射率以及厚度與主軸傾斜角。
    前述光線在非均向性與均向性界面會有非對稱的反射情形,伴隨而生的是能量守恆的問題,我們建立以波前偏折的角度來解釋此一現象:反射角與折射角的角度在某種情況下會大於90度。
    在實驗方面,我們以全反射衰減法對非對稱反射的理論,作一初步的驗證,排除了過去未考慮非對稱反射的現象。
    最後我們將具有表面粗糙度的薄膜,等效看成柱狀結構垂直分佈之非均向性薄膜,這個模型已有學者對無吸收性材料提出,我們以表面電漿在粗糙表面上之行為來對金屬材料的折射率與消光係數建立雙折射的模型。


    封面 目次 一、緒論與文獻回顧 1-1 文獻回顧 1-2 反射與折射現象之邊界條件 1-3 表面電漿波的激發 1-4 以全反射衰減法求不受表面粗糙度影響的銀膜光學常數 二、理論分析 2-1 主軸傾斜的非均向性波向量分佈 2-2 非對稱之反射現象(non-symmetry phenomenon) 2-3 Airy formula的修正 2-4 非對稱性反射,伴隨而生的一個問題 2-5 由波向量面決定ray vector 三、測量非均向性的方法 3-1 傾斜非均向性薄膜的反射係數 3-2 由反射率決定光學常數 3-3 實驗儀器與架構 3-4 量測儀器 3-5 實驗結果與討論 3-6 與Wang的理論比較 四、表面電漿波的激發原理與理論驗證 4-1 基本原理-表面電漿之色散關係 4-2 Kretschmann組態(稜鏡/金屬/空氣系統之反射率) 4-3 量測系統 4-4 以Kretschmann組態驗證 五、將具有表面粗糙度的銀膜視為非均向性薄膜 5-1 表面粗糙度的描述 5-2 表面粗糙度對表面電漿色散關係之影響 5-3 粗糙度於ATR系統中所扮演之角色 5-4 由表面粗糙度修正經由ATR曲線所測得之光學常數 5-5 實驗數據與結果 參考文獻

    1. Horowitz, F., “Structure-Induced Optical Anisotropy in thin film,” PhD dissertation, University of Arizona, Optical Science Center. (1983)
    2. T. Motohiro and Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28, 2466-2482 (1989)
    3. H. Wang, “Determination of optical constants of absorbing crystalline thin films from reflectance and transmittance measurements with oblique incident,” J. Opt. Soc. Am. A 11, 2331-2337 (1994)
    4. Gongjian Zhang, Keisuke Sasaki, “Measuring anisotropic refractive indices and film thickness of thin organic crystals using the prism coupling method,” Appl. Opt. 27, 1358-1362 (1988)
    5. G. I. Surdutovich, J. Kolenda, J. F. Fragalli, L. Misoguti, R. Vitlina, V. Baranauskas, “An interference method for determination of thin film anisotropy,” Thin Solid Films. 279, 119-123 (1996)
    6. H. Wang, “Reflection/transmission measurements of anisotropic films with one of the principal axes in the direction of columnar growth,” J. Mod. Opt. 42, 497-505 (1995)
    7. G. I. Surdutovich, R. Vitlina, A. V. Ghiner, S. F. Durrant, V. Baranauskass, “Three polarization reflectometry methods for determination of optical anisotropy,” Appl. Opt. 37, 65-78 (1998)
    8. J. M. Nieuwenhuizen, H. B. Haanstra, “Microfractography of thin films,” Philips Tech. Rev. 27, 87-91 (1966)
    9. I. Hodgkinson, Q. H. Wu, J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653-2659 (1998)
    10. I. Hodgkinson, Q. H. Wu, “Birefringent Thin Films and Polarizing Elements,” World Scientific, Singapore, 1997
    11. I. Hodgkinson, Q. H. Wu, “Anisotropic antireflection coating:design and fabrication,” Opt. Lett. 23, 1553-1555 (1998)
    12.李正中, ‘薄膜光學與鍍膜技術,’ 藝軒圖書出版社, 1999
    13. H. Raethter, “Surface Plasmons on Smooth and Rough Surfaces and on Grating,” Springer, Berlin, Heidelberg, New York (1988)
    14. W. P. Chen, J. M. Chen, “Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,” J. Opt. Soc. Am. 71, 189-191 (1981)
    15. C. C. Lee, Y. J. Jen, “Influence of surface roughness on the calculation of optical constants of a metallic film by attenuated total reflection,” Appl. Opt. 38, 6029-6033 (1999)
    16. R. Z. Vitlina, A. M. Dykhne, “Reflection of electromagnetic waves from a surface with low relief,” Sov. Phys. JETP 72, 983-990 (1991)
    17. R. Z. Vitlina, “Reflection of light from small stochastic roughness,” Sov. Phys. Opt. Spectrosc. 72, 660-667 (1992)
    18. Y. J. Jen, C. C. Lee, “The reflection and transmission phenomena of waves propagating between isotropic medium and arbitrary oriented anisotropic medium,” Opt. Lett. 1-3 (2001/2/15 publish)
    19. R. Inagaki, K. Kagami, E. T. Arakawa, “Photoascoustic observation of nonradiative decay of surface plasmon in silver,” Phys. Rev. B. 24,3644-3654 (1981)
    20. B. Rothenhausler, J. Rabe, P. Korpium, W. Knoll, “On the decay of surface plasmon polaritons at smooth and rough Ag-air interfaces,” Surf. Sci. 1, 373-342 (1984)
    21. S. Negm, H. Talaat, “Radiative and nonradiative decay of surface plasmons in thin metal films,” Solid State Commu. 84, 133-137 (1992)
    22. G. Rasigni, F. Varnier, M. Rasigni, J. Palmari, “Autocovariance functions, root mean square roughness heigh, and autocovariance length for rough deposits of cooper, silver and gold, ” Phys. Rev. B. 25, 2315-2323 (1982)
    23. J. P. Rossi, D. Maystre, “Rigorous numerical study of speckle patterns for two dimensional, random microrough surfaces,” Opt. Eng. 613-617 (1986)
    24. H. J. Simon, J. K. Guha, “Directional surface plasmon scattering from silver films,” Opt. Comm. 18, 391-399 (1976)
    25. D. L. Mill, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B. 12, 4063 (1975)
    26. D. L. Hornauer, “Light scattering experiments on silver films of different roughness using surface plasmon excitation,” Opt. Comm. 18, 76-79 (1976)
    27. E. Kretschmann “The angular dependence and the polarization of light emitted by surface plasmons on metals due to roughness,” Opt. Comm. 5, 331-337 (1972)
    28. A. A. Maradudin, W. Zierau, “Effects of surface roughness on the surface polariton dispersion relation,” Phys. Rev. B. 14, 484-512 (1976)

    QR CODE
    :::