跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張書梵
Shu-Fan Chang
論文名稱: 運用高頻資訊補償之超解析度演算法研究
High Frequency Compensated Super-Resolution Algorithm
指導教授: 張寶基
Pao-Chi Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 106
中文關鍵詞: 影像重建超解析度反投影迭代影像內插高解析度
外文關鍵詞: image interpolation, image reconstruction, super-resolution, high-resolution, Iterative Back Projection
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 時至現今,已有許多重建高解析度影像的方法。這些方法主要是去除影像經內插放大時的模糊效應和適當的增加空間上的資訊,以還原其高解析度的面貌。在本研究的方法中,藉由迭代反投影法(Iterative Back Projection, IBP)的原理,並加入高頻補償模型,依據應用的不同,發展出直接高頻補償(Direct High Frequency Compensated, DHFC)和估測高頻補償(Estimated High Frequency Compensated, EHFC)兩種方法。
    本論文所提的方法,除了大幅改善零次,雙線性,和三次立方等,傳統內插法所放大的影像品質外,主要在於改善IBP演算法的缺點。在一般影像測試的情形下,DHFC方法可提升約1~5.7倍的速度,並提升最終PSNR值約0.1~0.3dB;EHFC方法可提升約1~6.5倍的速度,並提升最終PSNR值約0.4~0.7dB。在文字影像測試的情形下,EHFC方法可提升約1~6.5倍的速度,並提升最終PSNR值約1.2~8.3dB。


    Currently, there exist many high resolution image reconstruction methods. The approach of these methods is mainly to remove the blur effect of image by interpolation enlargement and appropriately to increase the space information to restore its high resolution images. In this study, two methods, the Direct High Frequency Compensated (DHFC) and the Estimated High Frequency Compensated (EHFC), are developed based on the Iterative Back Projection (IBP) principle as well as the High Frequency Compensated Model. These methods substantially improve the image quality of reconstructed images enlarged by zero, bilinear, and bi-cubic interpolations. In addition, they accelerate the process significantly compared to IBP algorithm. In natural imaging test situation, DHFC method can increase the speed by 1~5.7 times and improve the ultimate PSNR value by 0.1~0.3dB while EHFC method can increase the speed by 1~6.5 times and improve the ultimate PSNR value by 0.4~0.7dB. Moreover, in text imaging test cases, EHFC method can increase the speed by 1~6.5 times and improve the ultimate PSNR value by 1.2~8.3dB.

    摘要 I 目錄 III 圖目 V 表目 VII 第一章 緒論 1 1.1 簡介 1 1.2 研究動機 4 1.3 論文架構 7 第二章 超解析度影像重建技術之發展現況 9 2.1 研究議題與方向 9 2.2 觀察模型(影像退化模型) 10 2.3 文獻回顧 12 第三章 影像內插法與相關投影迭代SR技術介紹 17 3.1 影像放大 17 3.2 傳統影像內插法簡介 21 3.2.1最鄰近像素內插法 21 3.2.2雙線性內插法 23 3.2.3雙立方內插法 25 3.3 邊緣保留影像內插法 27 3.4 投影迭代式超解析度演算法 29 3.4.1凸集合投影迭代法 29 3.4.2反投影迭代法 31 第四章 運用高頻資訊補償之超解析度影像重建技術 35 4.1高頻重建修正概念介紹 36 4.2高頻補償SR演算法 44 4.2.1直接高頻補償法 44 4.2.2估測高頻補償法 51 4.3視訊高解析度重建機制 54 4.3.1移動補償與移動估測 54 4.3.2快速高解度視訊影像重建法 59 第五章 實驗結果與討論 63 5.1實驗環境 63 5.1.1實驗軟硬體 63 5.1.2實驗影像樣本 63 5.1.3實驗影像退化程序 64 5.1.4效能比較方式 65 5.2靜態影像超解析度實驗結果與討論 66 5.2.1實驗結果 66 5.2.2討論 78 5.3動態影像超解析度實驗結果與討論 83 5.3.1實驗結果 84 5.3.2討論 85 第五章 結論與未來展望 87 參考文獻 89

    [1]Conventional Television Systems, ITU-R standard BT470-6, 1970-1998.
    [2] High Definition TV Analog Video Interface, EIA standard 770.3-A, March 2000.
    [3]劉國慶,(民91)。利用磁振造影的血流灌注影像分割技術來評估腦部疾病,國立陽明大學放射醫學科學研究所碩士論文。
    [4] Park S C,Park M K,Kang M G. Super-resolution image reconstruction: a technical review[J]. IEEE signal processing magazine, 2003, (5):21-36
    [5] R. G. Keys, “Cubic Convolution Interpolation for Digital Image Processing”, IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-29, no. 6, pp. 1153-1160, Dec. 1981.
    [6] H. S. Hou, H. C. Andrews, “Cubic Splines for Image Interpolation and Digital Filtering”, IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-26, no. 6, pp. 508-517, Dec. 1978.
    [7] W. K. Pratt, Digital Image Processing, 2nd ed. New York: Wiley, 1991.
    [8] M. Unser, A. Aldroubi, M. Eden, “B-Spline Signal Processing: Part II-Efficient Design and Applications”, IEEE Trans. Signal Processing, vol. 41, pp. 834-848, Feb. 1993.
    [9] M. Unser, A. Aldroubi, M. Eden, “Enlargement or Reduction of Digital Images with Minimum Loss of Information”, IEEE Trans. on Image Processing, vol. 4, pp. 247-258, Mar. 1995.
    [10] M. Lehmann, Claudia Gonner, Klaus Spitzer, “Addendum: B-spline Interpolation in Medical Image Processing”, IEEE Trans. on Medical Image, vol. 20, pp. 660-665, July 2001.
    [11] 王隆仁, ”A fast Cubic-Spline Interpolation and its Application”, 博士論文, 國立中山大學CSIE, Mar. 2001.
    [12] M. Unser, ”Spline: A Perfect Fit for Signal and Image Processing”, IEEE Signal Processing Magazine, pp. 22-38, Nov. 1999.
    [13] Erik H. W. Meijering, Karel J. Zuiderveld, Max A. Viergever, “Image Reconstruction by Convolution with Symmetrical Piecewise nth-Order Polynomial Kernels”, IEEE Trans. on Image Processing, vol. 8, pp. 192-201, Feb. 1999.
    [14] R. R. Schultz and R. L. Stevenson, ”A Bayesian Approach to Image Expansion for Improved definition”, IEEE Trans. Image Processing, vol. 3, pp. 233-242, May 1994.
    [15] Pei-Hwa Chang, Jin-Jang Leou, Hsun-Chang Hsieh, “A Genetic Algorithm Approach to Image Sequence Interpolation”, Signal Processing: Image Commu., pp. 506-520, 2001
    [16] Chulhee Lee, Murray Eden, M. Unser, “High-Quality Image Resizing Using Oblique Projection Operators”, IEEE Trans. on Image Processing, vol. 7, pp. 679-692, May 1998.
    [17] Giovanni Ramponi, “Warped Distance for Space-Variant Linear Image Interpolation”, IEEE Trans. on Image Processing, vol. 8, pp. 629-639, May 1999.
    [18] Kris Jensen, Dimitris Anastassiou, “Subpixel Edge Localization and the Interpolation of Still Image”, IEEE Trans. on Image Processing, vol. 8, pp. 285-295, Mar. 1995.
    [19] Hou-Chun Ting, Hsueh-Ming Hang, “Edge Preserving Interpolation of Digital Image Using Fuzzy Inference”, JVCIR, vol. 8, pp.338-355, Dec. 1997.
    [20] Jia-Guu Leu, “Image Enlargement Based on a Step Edge Model”, Pattern Recognition, pp. 2055-2073, 2000.
    [21] Xin Li, M. T. Orchard, “New Edge-Directed Interpolation”, IEEE Trans. on Image Processing, vol. 10, pp. 1521-1527, Oct. 2001.
    [22] Hayit Greenspan, Charles H. Anderson, and Sofia Akber, “Image Enhancement by Nonlinear Extrapolation in Frequency Space”, IEEE Trans. On Image Processing, vol. 9, no. 6, June 2000.
    [23] Murat Belge, Misha E. Kilmer, and Eric L. Miller, “Wavelet Domain Image Restoration with Adaptive Edge-Preserving Regularization”, IEEE Trans. On Image Processing, vol. 9, no. 4, Apr. 2000.
    [24] R. R. Schultz and R. L. Stevenson, “A Bayesian approach to image expansion for improved definition,” IEEE Transactions on Image Processing, vol. 3, pp. 233-242, May 1994.
    [25] R. R. Schultz and R. L. Stevenson, “Improved definition video frames from video sequence,” Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, vol. 4, pp. 2169-2171, May 1995.
    [26] R. R. Schultz and R. L. Stevenson, “Extraction of high-resolution frame from video sequence,” IEEE Transactions on Image Processing, vol. 5, pp. 996-1011, June 1996.
    [27] R. R. Schultz, L. Meng, and R. L. Stevenson, “Subpixel motion estimation for super-resolution image sequence enhancement,” Journal of Visual Communication and Image Representation, vol. 9, no. 1, pp. 38-50, Mar. 1998.
    [28] P. H. Chang, J. J. Leou, and H. C. Hsieh, “A genetic algorithm approach to image sequence interpolation,” Signal Processing: Image Communication, vol. 16, pp. 507-520, 2001.
    [29] S. Baker and T. Kanade, “Hallucinating faces,” Automatic Face and Gesture Recognition, 2000. Proceedings. Fourth IEEE International Conference on, pp. 83-88, 2000.
    [30] S. Baker and T. Kanade, “Limits on super-resolution and how to break them,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, issue: 9, pp. 1167-1183, Sept. 2002.
    [31] J. Patti, M. I. Sezan, and A. M. Tekalp, “Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time,” IEEE Transactions on Image Processing, vol. 6, no. 8, pp. 1064-1076, Aug. 1997.
    [32] Nimish R. Shah and Avideh Zakhor, “Resolution enhancement of color video sequences,” IEEE Transactions on Image Processing, vol. 8, issue: 6, pp. 879-885, June 1999.
    [33] Nimish R. Shah and Avideh Zakhor, “Multiframe spatial resolution enhancement of color video,” Image Processing, 1996. Proceedings. International Conference on, vol. 1, pp. 985-988, Sept. 1996.
    [34] B. C. Tom and A. K. Katsaggelos, “Resolution enhancement of monochrome and color video using motion compensation,” IEEE Transactions on Image Processing, vol. 10, issue: 2, pp. 278-287, Feb. 2001.
    [35] A. K. Katsaggelos, “A multiple input image restoration approach,” Journal of Visual Communication and Image Representation, vol. 1, no. 1, pp. 93–103, Sept. 1990.
    [36] M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP: Graphical Models and Image Processing, vol. 53, no. 3, pp. 231–239, May 1991.
    [37] M. Irani and S. Peleg, “Motion analysis for image enhancement: resolution, occlusion and transparency,” Journal of Visual Communications and Image Representation, vol. 4, pp. 324-335, Dec. 1993.
    [38] A. Zomet and S. Peleg, “Efficient super-resolution and applications to mosaics,” International Conference on Pattern Recognition (ICPR''00), vol. 1, pp. 3-8, Sept. 2000.
    [39] A. Zomet, A. Rav-Acha, and S. Peleg, “Robust super-resolution,” in Proceedings of the Int. Conf. on Computer Vision and Patern Recognition (CVPR), vol. 1, pp. 645-650, Dec. 2001.
    [40] A. Zomet and S. Peleg, “Multi-sensor super-resolution,” Applications of Computer Vision, 2002. (WACV 2002). Proceedings. Sixth IEEE Workshop on, pp. 27-31, 2002.
    [41] H. Greenspan, G. Oz, N. Kiryati, and S. Peled, “MRI inter-slice reconstruction using super-resolution,” Magnetic Resonance Imaging, vol. 20, pp.437-446, 2002.
    [42] H. Greenspan, G. Oz, N. Kiryati, and S. Peled, “Super-resolution in MRI,” Biomedical Imaging, 2002. Proceedings. 2002 IEEE International Symposium on, pp. 943-946, 2002.
    [43] Y. Altunbasak, A. Patti, and R. Mersereau, “Super-resolution still and video reconstruction from mpeg-coded video,” IEEE Trans. Circuits Syst. Video Technol., Vol. 12, no. 4, pp. 217–226, Apr. 2002.
    [44] G. Messina, S. Battiato, M. Mancuso, A. Buemi, “ Improving image resolution by adaptive back-projection correction techniques ”, IEEE Transactions on Consumer Electronics, Vol.48, Issue: 3, pp.409-416, August 2002
    [45] Battiato S., Gallo G., Mancuso M., Messina G., Stanco F., ” Analysis and Characterization of Super-Resolution Reconstruction ”, in Proc. SPIE Conf. 2003
    [46] S. Farsiu D. Robinson, M. Elad and P. Milanfar, “Robust Shift and Add Approach to Super-Resolution,” in Proc. SPIE Conf. Applications of Digital Signal and Image Processing, San Diego, CA, pp.121-130, Aug.2003.
    [47] S. Farsiu D. Robinson, M. Elad and P. Milanfar, “Fast and Robust Super-Resolution,” Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference, Vol. 2, pp.II - 291-4. Vol.3, Sept. 2003
    [48] S. Farsiu, D. Robinson, M. Elad and P. Milanfar, “Fast and Robust Multi-Frame Super-Resolution,” IEEE Trans. Image Processing, Vol. 13, No. 10, pp.1327-1344, 2004.
    [49] Ben-Ezra, M.; Zomet, A.; Nayar, S.K., “Video Super-Resolution Using Controlled Subpixel Detector Shifts,” IEEE Trans., Vol. 27, no. 6, June 2005.
    [50] Papathanassiou, C.; Petrou, M., “Super resolution: an overview”, IGARSS ''05. Proceedings. 2005 IEEE International , Vol. 8, pp.5655 – 5658, July 2005
    [51] Libor Váša, Václav Skala, Resolution Improvement of Digitized Images. Algoritmy 2005, ed. Angela Handlovičová, Zuzana Krivá, Karol Mikula, D, Slovak University of Technology, Bratislava, Slovak University of Technology, Bratislava, Faculty of Civil Engineering, Department of Mathematics, Radlinského 11, 81368 Bratislava, Slovakia, March, 2005.
    [52] Kramer, P.; Hadar, O.; Benois-Pineau, J.; Domenger, J.-P. “Use of Motion Information in Super-Resolution Mosaicing”, Image Processing, 2006 IEEE International Conference , pp.357–360,Oct. 2006.
    [53] Patanavijit, V.; Jitapunkul, S. “An Iterative Super-Resolution Reconstruction of Image Sequences using Fast Affine Block-Based Registration with BTV Regularization” , Circuits and Systems, 2006. APCCAS 2006. IEEE Asia Pacific Conference, pp.1717–1720, Dec. 2006
    [54] Feng Li, Donald Fraser, Xiuping Jia (July 2007). Efficient IBP with super resolution for ALOS imagery. Unpublished manuscript.
    [55] Dai, Shengyang; Han, Mei; Xu, Wei; Wu, Ying; Gong, Yihong, “Soft Edge Smoothness Prior for Alpha Channel Super Resolution” , Computer Vision and Pattern Recognition, 2007. CVPR ''07. IEEE Conference, pp.1-8 , June 2007
    [56] Li, Min; Xu, Lizhong; Huang, Fengchen; Tang, Min; Wang, Huibin, “Reconstruction of Bionic Compound Eye Images Based on Superresolution Algorithm”, Integration Technology, 2007. ICIT ''07. IEEE International Conference, pp.706 – 710, March 2007
    [57] Dai, Shengyang; Han, Mei; Wu, Ying; Gong, Yihong, “Bilateral Back-Projection for Single Image Super Resolution”, Multimedia and Expo, 2007 IEEE International Conference, pp.1039-1042, July 2007
    [58] A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing, Prentice Hall, pp. 140-210, 1999.
    [59] J.V. VEGTE, “Fundamentals of Digital Signal Processing” New Jersey:Prentice Hall, 2001.
    [60] T.M. Lehmann, C. Gonner, K. Spitzer, “Survey: interpolation methods in medical image processing,” IEEE Trans. Medical Imaging, vol. 18, no. 11, pp. 1049-1075, Nov. 1999.
    [61] E.H.W. Meijering, K.J. Zuiderveld, M.A. Viergever, “Image reconstruction by convolution with symmetrical piecewise nth-order polynomial kernels,” IEEE Trans.
    Image Processing, vol 8, no. 2, pp. 192-201, Feb. 1999 .
    [62] K. Turkowski, “Filters for common resampling tasks,” Apple Computer, April 1990.
    [63]C. A. Lindley, Practical Image Processing in C, Big Apple Tuttle-Mori Agency, Inc., New York, 1994.
    [64] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision, PWS Publishing , 1999, pp. 67-6
    [65]林俊男,(民91)。一種加強影像邊緣銳化的影像放大方法 (A new edge enhancing method for image enlargement),元智大學資訊工程研究所碩士論文。
    [66]Jerry Kuo,影像處理-內插法應用於圖片縮放,民94年4月25日,取自:http://delphi.ktop.com.tw/topic.asp?topic_id=34732
    [67]G. Ramponi, “Warped Distance for Space-variant Linear Image Interpolation,” IEEE Trans. on Image Processing, vol. 8, no. 5, May. 1999, pp. 629–639.
    [68]R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Signal Processing, vol. 29, no. 6, pp. 1153-1160, Dec. 1981.
    [69]S.E. El-Khamy, M.M. Hadhoud, M.I. Dessouky, B.M. Salam, F.E.A. El-Samie, “A new edge preserving pixel-by-pixel (PBP) cubic image interpolation approach,” National Radio Science Conference, pp. C11-1-9, March 2004.
    [70]S.Jiazheng, S.E. Reichenbach, “Image interpolation by two-dimensional parametric cubic convolution,” IEEE Trans. Image Processing, vol. 15, no. 7, pp. 1857-1870, July 2006.
    [71]E.Meijering, M. Unser, “A note on cubic convolution interpolation,” IEEE Trans. Image Processing, vol. 12, no. 4, pp. 477-479, April 2003.
    [72]S.Jiazhen, S.E. Reichenbach, “Interpolation by asymmetric, two-dimensional cubic convolution,” IEEE International Conference on Image Processing, vol. 2, Sept. 2005.
    [73]S.E. Reichenbach, F. Geng, “Two-dimensional cubic convolution,” IEEE Trans. Image Processing, vol. 12, no. 8, pp. 857-865, Aug. 2003.
    [74] J. Allebach and P.W. Wong, "Edge-directed interpolation", Proceeding of KIP'' 1996, pp.707-710
    [75] X. Li, and M. T. Orchard, “New Edge-Directed Interpolation,” IEEE Trans. Image Processing, vol. 10, issue 10, October 2001.
    [76] F. Yeung, S. F. Levinson, and K. J. Parker, “Mutilevel and Motion Model-Based Ultrasonic Speckle Tracking Algorithm”, Ultrasound in Med. & Biol., vol. 24, no. 3, pp. 427-411, 1998
    [77] C. H. Lee and L. H. CHen, “A Fast Motion Estimation Algorithm Based on the Block Sum Pyramid”, IEEE Trans. On Image Processing, vol. 6, no. 11, Nov 1997
    [78] P. Moulin, R. Krishnamurthy, and J. W. Woods, “Multiscale Modeling and Estimation of Motion Fields for Video Coding”, IEEE Trans. On Image Processing, vol. 6, no. 12, Dec. 1997
    [79] J. Malo, F. J. Ferri, J. Albert, and J. M. Artigas, “Splitting Criterion for Hierarchical Motion Estimation Based on Perceptual Coding”, Electronics Letters, vol. 34, no. 6, 1998
    [80] B. C. Song, and J. B. Ra, “A Fast Multi-resolution Block Matching Algorithm for Motion Estimation”, Signal Processing: Image Commu., pp.799-810, 2000.

    QR CODE
    :::