跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃冠凱
Kuan-Kai Huang
論文名稱: 氮化鋁鎵/氮化鎵異質接面金屬-半導體-金屬光偵測器之製作與特性分析
The study of AlGaN/GaN heterojunction metal-semiconductor-metal photodetector
指導教授: 李清庭
Ching-Ting Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 91
語文別: 中文
論文頁數: 69
中文關鍵詞: 光偵測器金屬-半導體-金屬異質接面氮化鋁鎵/氮化鎵
外文關鍵詞: heterojunction, AlGaN/GaN, photodetector, MSM
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文係利用有機金屬氣相沉積技術分別成長氮化鋁鎵/氮化鎵
    異質接面蕭特基二極體結構試片和金屬-半導體-金屬光偵測器結
    構試片,對試片製作蕭特基二極體,量測金屬與試片接觸的蕭特基位
    障及理想因子,最後將蕭特基二極體的研究結果應用於金屬-半導體-
    金屬光偵測器之製作,並量測元件暗電流及光頻譜響應度等特性。
    論文中,在氮化鋁鎵/氮化鎵異質接面金屬-半導體-金屬光偵測
    器的光頻譜響應度中看出異質接面有抑制光電子-電洞被電極吸收
    的情形,為確定原因,試著將試片中的氮化鋁鎵披覆層利用光電化學
    氧化方法去除,再製作成金屬-半導體-金屬光偵測器,分析具有披覆
    層及無披覆層光偵測器特性之差異。
    最後藉由量測於不同偏壓下之光頻譜響應度與霍爾量測結果,確
    定在光響應度抑制及連續暗電流中的峰值為氮化鋁鎵/氮化鎵異質接
    面能帶不連續,在氮化鎵側產生一位阱,並有一很高濃度的電子侷限
    在小範圍的位阱內,稱為二維電子氣,所造成的結果。


    II 目錄 第一章緒論………………………………………………………1 第二章原理………………………………………………………5 2.1 金屬-半導體接面理論…………………….….…………5 2.1.1 蕭特基接面理論…………………….……………………5 2.2 金屬-半導體-金屬光偵測器工作原理………......……...8 2.3 量測技術原理………………………….……………………9 2.3.1 暗電流與光電流之特性量測…………………………….9 第三章元件設計製作與量測結果……………………...……12 3.1 元件設計……………………………..…….………………12 3.1.1 磊晶結構………………………...…………………..13 3.2 元件製作……………………………..….…...……….….14 3.2.1 元件結構………………………………………….….14 3.2.2 蕭特基二極體元件製程………………….……….…….14 3.2.3 金屬-半導體-金屬光偵測器製程…………...…..16 3.3 量測與實驗結果……………………....…………………17 3.3.1 蕭特基二極體電流-電壓特性量測………….……18 3.3.2 金屬-半導體-金屬光偵測器電流-電壓特性量測.19 III 3.3.3 金屬-半導體-金屬元件暗電流衰減量測…….…21 3.4 利用光電化學氧化方法成長氧化層於光偵測器………24 第四章結論…………………………………………………26 參考文獻…………………..……………………………………28 圖………………………………………..………………………36

    28
    參考文獻
    [1] E. Monroy, T. Palacios, O. Hainaut, F. Omnes, F. Celle, J. F.
    Hochedez, “Assessment of GaN metal-semiconductor-metal
    photodiodes for high-energy ultraviolet photodetection“, Appl. Phys.
    Lett. Vol. 80, pp. 3198 (2000)
    [2] S. Nakamura and G. Fasol, The Blue Laser Diodes, Springer
    [3] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-
    brightness InGaN/AlGaN double-heterostructure blue-light-emitting
    diodes”, Appl. Phys. Lett. Vol. 64, pp. 1687 (1994)
    [4] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and
    T.Mukai, “Superbright Green InGaN
    Single-Quantum-Well-Structure Light-Emitting Diodes”, Jpn. J.
    Appl. Phys. Vol. 34, pp. L1332 (1995)
    [5] T. Mukai, D. Morita, and S. Nakamura, “High-power UV
    InGaN/AlGaN double-heterostructure LEDs”, J. Cryst. Growth, Vol.
    189/190, pp. 778 (1998)
    [6] T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-Based
    29
    Light-Emitting Diodes Operable at High Ambient Temperatures”,
    Jpn. J. Appl. Phys. Vol. 37, pp. L479 (1998)
    [7] M. S. Shur, “GaN Based Transistors for High Power Applications”,
    Solid-State Electronics, Vol. 42, pp. 2131 (1998)
    [8] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Oslon, “Metal
    semiconductor field effect transistor based on single crystal GaN”,
    Appl. Phys. Lett. Vol. 62, pp. 1786 (1993)
    [9] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm,
    and M. S. Shur, “Microwave performance of a 0.25 µm gate AlGaN/
    GaN heterostructure field effect transistor”, Appl. Phys. Lett. Vol.
    65, pp. 1121 (1994)
    [10] F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J.
    J. Klaasen, R. F. Kopf, H. Cho, K. B. Jung, J. R. La Roche, R. G.
    Wilson, J. Han, R. J. Shul, A. G. Baca, and S. J. Pearton, “300°C
    GaN/AlGaN Heterojunction Bipolar Transistor”, MRS Internet J.
    Nitride Semicond. Res. Vol. 3, 41 (1998)
    [11] G. S. Nakamura, “InGaN-based violet laser diodes”, Semicond. Sci.
    Technol. Vol. 14, pp. R27 (1999)
    [12] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A. R.
    30
    Bhattarai, “Schottky barrier photodetector based on Mg-doped
    p-type GaN films”, Appl. Phys. Lett. Vol. 63, pp. 2455 (1993)
    [13] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M.
    Blasingame, L. F. Reitz, “High-responsivity photoconductive
    ultraviolet sensors based on insulating single-crystal GaN epilayers”,
    Appl. Phys. Lett. Vol. 60, pp. 2917 (1992)
    [14] Z. C. Huang, D. B. Mott, P. K. Shu, R. Zhang, J. C. Chen, D. K.
    Wickenden, “Optical quenching of photoconductivity in GaN
    photoconductors”, J. Appl. Phys. Vol. 82, pp. 2707 (1997)
    [15] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, J. C.
    Campell, “Comprehensive characterization of
    metal-semiconductor-metal ultraviolet photodetectors fabricated on
    single-crystal GaN”, J. Appl. Phys. Vol. 83, pp. 6148 (1998)
    [16] Q. Chen, M. A. Khan, C. J. Sun, and J. W.Yang, “Visible-blind
    ultraviolet photodetectors based on GaN p-n junctions”, Electron.
    Lett. Vol. 31, pp. 1781 (1995)
    [17] E. Monroy, E. Munoz, F.J. Sanchez, F. Calle, E. Calleja, B.
    Beaumont, P. Gibart, J. A. Munoz, F. Cusso, “High-performance
    GaN p-n junction photodetectors for solar ultraviolet applications”,
    31
    Semicond. Sei. Technol. Vol. 13, pp. 1042 (1998)
    [18] D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, D. Jiaz, M.
    Razeghi, “Visible blind GaN p-i-n photodiodes”, Appl. Phys. Lett.
    Vol. 72, pp. 3303 (1998)
    [19] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. San-chez, M.
    Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes”,
    Appl. Phys. Lett. Vol. 74, pp. 1171 (1999)
    [20] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, J. A. Munoz,
    “AlxGa1-xN: Si Schottky barrier photodiodes with fast response and
    high detectivity”, Appl. Phys. Lett. Vol. 73, pp. 2146 (1998)
    [21] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J.
    Diaz, M. Razeghi, “High-speed, low-noise
    metal-semiconductor-metal ultraviolet photodetectors based on
    GaN”, Appl. Phys. Lett. Vol. 74, pp. 762 (1999)
    [22] E. Monroy, F. Calle, E. Munoz, and F. Omnes, “Effects of Bias on
    the Responsivity of GaN Metal-Semiconductor-Metal Photodiodes”,
    Phys. Stat. Sol. (a), Vol. 176, pp. 157 (1999)
    [23] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa,
    T. Jimbo, M. Umeno, “Back-Illuminated GaN
    32
    Metal-Semiconductor-Metal UV Photodetector with High Internal
    Gain”, Jap. J. Appl. Phys. Vol. 40, pp. L505 (2001)
    [24] C. H. Chen, S. J. Chang, Y. K. Su, Senior Member, IEEE, G. C. Chi,
    J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, Member, “GaN
    metal-semiconductor-metal ultraviolet photodetectors with
    transparent indium-tin-oxide Schottky contacts”, IEEE photon.
    Technol. Lett. Vol. 13, pp. 848 (2001)
    [25] H. Z. Xu, Z. G. Wang, M. Kawabe, I. Harrison, B. J. Ansell, C. T.
    Foxon, “Fabrication and characterization of
    metal-semiconductor-metal (MSM) ultraviolet photodetectors on
    undoped GaN/sapphire grown by MBE”, J. Cryst. Growth, Vol.
    218, pp. 1 (2000)
    [26] E. H. Rhoderick, R. H. Williams, Metal-Semiconductor Contacts,
    Clarendon Press. Oxford (1998)
    [27] S. M. Sze, Semiconductor Device Physics and Technology, pp. 160
    (1985)
    [28] S. M. Sze, Semiconductor Device Physics and Technology, pp. 278
    (1985)
    [29] M. Sze, D. J. Coleman, JR. and A. Loya, Solid-State Electronics,
    33
    “Current Transport in Metal-Semiconductor-Metal (MSM)
    structures”, Vol. 14, pp. 1209 (1971)
    [30] Schubert F. Soares, “Photoconductive Gain in a Schottky Barrier
    Photodiode”, Jap. J. Appl. Phys. Vol. 31, pp. 210 (1992)
    [31] M. Klingenstein and J. Kuhi, J. Rosenzweig, C. Moglestus, A.
    Hulsmann, Jo. Schneider and K. Kohler, “Photocurrent Gain
    Mechanisms in Metal-Semiconductor-Metal Photodetectors”,
    Solid-State Electronics, 37, 2, 333 (1994)
    [32] O. Katz, V. garber, B. Meyler, G. Bahir, and J. Salzman, “Gain
    mechanism in GaN Schottky ultraviolet detectors”, Appl. Phys. Lett.
    Vol. 79, pp. 1417 (2001)
    [33] J. H. Burrought, “H-MESFET compatible GaAs/AlGaAs MSM
    photodetector”, IEEE photon. Technol. Lett. Vol. 3, pp. 660 (1991)
    [34] Subramaniam Arulkumran, Takashi Egawa, Guang-Yuan Zhao,
    Hiroyasu Ishikawa, Takashi Jimbo and Masayoshi Umeno,
    “Electrical Characteristics of Schottky Contacts on GaN and
    Al0.11Ga0.89N”, Jap. J. Appl. Phys. Vol. 39, pp. L351 (2000)
    [35] D. Qiao, L. S. Yu, S. S. Lau, J. M. Redwing, J. Y. Lin and H. X.
    Jiang, ”Dependence of Ni/AlGaN Schottky barrier height on Al
    34
    mole fraction”, J. Appl. Phys. Vol. 87, pp. 801 (2000)
    [36] S. Arulkumran, T. Egawa, H. Ishikawa, M. Umeno and T. Jimbo,
    “Effects of annealing on Ti, Pd, and Ni/n-Al0.11Ga0.89N Schottky
    diodes”, IEEE Trans. on Electron Devices, Vol. 48, pp. 573 (2001)
    [37] Donald A. Neamen, Semiconductor Physics & Devices, 2nd, pp. 332
    (2000)
    [38] C. Monier, S. J. Pearton, P. C. Chang, A. G. Baca, and F. Ren,
    “Performance Prediction for N-P-N AlxGa1-xN/GaN HBT”, IEEE
    Trans. on Electron Devices, Vol. 48, No. 3, 597 (2001)
    [39] Narihiko Maeda, Tadashi Saitoh, Kotaro Tsubaki, Toshio Nishida,
    and Naoki Kobayashi, “Enhanced electron mobility in
    AlGaN/GaN/AlGaN double-heterostructures by piezoelectric
    effect”, Jpn. J. Appl. Phys. Vol. 38, pp. 799 (1999)
    [40] B. Shen, T. Someya, O. Moriwaki and Y. Arakawa, “Effect of carrier
    confinement on photoluminescence from modulation-doped
    AlxGa1–xN/GaN heterostructures”, Appl. Phys. Lett. Vol. 76, pp. 679
    (2000)
    [41] N. Maeda, T. Nishda, N. Kobayashi, M. Tomizawa,
    “Two-dimensional electron-gas density in AlGaN/GaN
    heterostructure field-effect transistor”, Appl. Phys. Lett. Vol. 73, pp.
    1856 (1998)

    QR CODE
    :::