跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許弘錢
Hung-Chien Hsu
論文名稱: 兆赫波輻射用-高速高功率分離式傳輸復合行波式光二極體
High Speed and High Power Separated-Transport-Recombaination Traveling-Wave Photodiode for the Application of THz Transmitter
指導教授: 許晉瑋
Jin-Wei Shi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 60
中文關鍵詞: 行波式光二極體高速/高功率光二極體兆赫波發射器
外文關鍵詞: Traveling-wave photodiode, THz transmitter, High speed / power photodiode
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中,我們提出了一新穎的分離式傳輸復合行波式光二極體,此光二極體不但可提升光二極體的輸出功率-頻寬雙重表現,更可解決傳統光二極體在設計上載子傳輸時間、本質電容以及飽和電流三者的抵觸關係。
    在一般高速光二極體的表現上,通常的指標是追求頻寬與飽和電流的表現。但傳統的光二極體在高功率操作下,通常會因載子漂移累積等問題,產生一嚴重的空間電荷遮蔽效應,造成嚴重的頻寬限制與輸出功率衰退的缺點。
    所以我們針對傳統光二極體所遭遇到的問題,提出了我們新穎的磊晶結構加以克服。在傳統光二極體的吸光層中,加入一部分的復合中心(低溫成長砷化鎵)與傳輸層(砷化鎵)做組合。如此一來和傳統光二極體相比,除了將可大大提高速度與輸出功率表現外,更也解決了傳統光二極體在設計上的抵觸問題。
    此元件的成功,不僅可解決數位和類比光通訊領域中的光偵測器瓶頸與問題,更大大的可應用在一兆赫(毫米)波源發射器上的光電導元件,以提供作為一穩定的兆赫波源發射器。


    We demonstrate a novel structure of p-i-n photodiode: Separated-Transport-Recombination photodiode, which can greatly release the trades-off between RC bandwidth limitation, responsivity, and output saturation power performance. By incorporating an epitaxial layer, which has short carrier lifetime (less than 1ps) to serve as the recombination center, with the intrinsic photo-absorption layers, this device exhibits superior speed and power performance to the control photodiode with pure intrinsic photo-absorption layer. Our demonstrated structure can also eliminate the bandwidth degradation problem of the high-speed photodetector, whose active photo-absorption layer is fully composed of materials with short lifetime (~1ps), under high dc bias voltages.

    目錄 目錄 Ⅰ 圖目錄 Ⅳ 表目錄 Ⅶ 第一章、簡介 ? 1-1背景 1 ? 1-2兆赫波簡介與其應用 3 ? 1-3論文組織與架構 6 第二章、光檢測器原理 ? 2-1光二極體介紹 8 ? 2-2行波式光二極體原理與頻率限制 10 ? 2-2-1行波式光二極體等效電路 10 ? 2-2-2行波式光二極體頻寬限制 12 ? 2-3傳統光二極體的磊晶結構原理與問題 15 ? 2-3-1傳統PIN砷化鎵光二極體 15 ? 2-3-2傳統PIN低溫砷化鎵光二極體 16 ? 2-4分離式傳輸復合行波光二極體 18 ? 2-4-1分離式傳輸復合行波光二極體原理 19 ? 2-4-2分離式傳輸復合光二極體的磊晶材料頻寬限制 21 第三章、光檢測器設計與製作 ? 3-1 設計模擬 22 ? 3-2 磊晶設計 27 ? 3-3 製作流程 28 ? 3-3-1曝光顯影製程簡介 28 ? 3-3-2 N contact金屬化製程 29 ? 3-3-2主動區蝕刻 30 ? 3-3-3 P contact金屬化製程 31 ? 3-3-4快速熱回火 32 ? 3-3-5元件區蝕刻 32 ? 3-3-6平坦化與絕緣 33 ? 3-3-7金屬導線連接線 34 ? 3-3-8元件研磨與切割 35 第四章、量測討論 ? 4-1 TLM量測 41 ? 4-2 DC量測 43 ? 4-3 Electrical-Sampling高速量測 43 ? 4-3-1量測設備 45 ? 4-3-2量測結果與討論 45 第五章、結論 ? 5-1總結 51 ? 5-2未來方向 51 ? 5-2-1元件效能改良 51 ? 5-2-2兆赫波輻射器模型應用 52 參考文獻 53 著作列表 59 圖目錄 圖1-1(a)高速高效率光二極體(b)高速高功率光二極體 2 圖1-2電磁波頻譜示意圖 4 圖1-3兆赫波收發器無線系統 5 圖2-1(a)垂直入射型光二極體(b)邊緣入射型光二極體 9 圖2-2行波式光二極體示意圖 11 圖2-3元件內部等效圖 11 圖2-4(a)光二極體等效電路(b)光二極體簡化等效電路 12 圖2-5入射光脈衝激發電脈衝後電流表示 13 圖2-6元件特性阻抗模擬與外部電路結合示意圖 14 圖2-7高功率注入下,傳統砷化鎵光二極體能帶與電場分佈示意圖 15 圖2-8傳統低溫砷化鎵光二極體能帶與電場分佈示意圖 17 圖2-9陷阱能位障變化示意圖 18 圖2-10分離式傳輸復合行波式光二極體能帶與電場分佈示意圖 19 圖2-11分離式傳輸復合行波式光二極體在加大電場操作下能帶與電場分佈改變示意圖 20 圖3-1以Matlab模擬分離式傳輸復合光二極體之頻寬對吸光厚度關係圖 24 圖3-2以Matlab模擬傳統砷化鎵光二極體之頻寬對吸光層厚度關係 25 圖3-3漸變式匹配共平面電極設計 26 圖3-4磊晶層結構示意圖 27 圖3-5曝光顯影製程示意圖 29 圖3-6 N型金屬化製程剖面圖 30 圖3-7主動區蝕刻製程剖面圖與OM上視圖 31 圖3-8 P型金屬化製成剖面圖與OM上視圖 32 圖3-9元件區蝕刻製程剖面圖與OM上視圖 33 圖3-10 BCB塗佈與BCB蝕刻製程剖面圖 34 圖3-11連接線金屬化製成剖面圖與OM上視圖 35 圖3-12試片經製程步驟完成OM上視圖 35 圖3-13單一元件經切割分離後示意圖 36 圖3-14 (A)~(H)整體製程流程側剖面圖 37 圖4-1 TLM測試試片 41 圖4-2 TLM測試結果 41 圖4-3元件A&B的直流量測結果 43 圖4-4量測設備架構圖 44 圖4-5元件A&B的高速量測-響應度的表現 45 圖4-6元件A&B的高速量測-速度的表現 47 圖4-7元件A&B的高速量測-脈衝響應波形圖 48 圖4-8元件A與B分別在高功率與低功率下的操作比較 49 圖5-1沉積砷化鎵作為金半接面連接層 51 圖5-2逐漸耦合式的邊緣入射二極體結構 51 圖5-3兆赫波發射器示意圖 52 表目錄 表1 實驗組-分離式傳輸復合行波式光二極體磊晶表 38 表2 對照組-傳統砷化鎵光二極體磊晶表 39 表3 實驗組A與對照組B磊晶結構 40 表4 P型連接金屬阻值 42

    [1.1] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
    [1.2] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, “High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 709-727, Jul./Aug. 2004.
    [1.3] A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz Wireless Link Using Photonic Techniques for Generation, Modulation, and Emission of Millimeter-Wave Signals” J. of Lightwave Technol., vol. 21, pp. 2145-2153, Oct. 2003.
    [1.4] K. P. Yang, P. L. Richards and Y. R. Shen, “Generation of Far-Infrared Radiation by Picosecond Light Pulses in LiNbO3,’’ Appl. Phys. Lett. Vol.19, pp320-323 , 1971
    [1.5] D. H. Auston , K. P. Cheung and P. R. Smith, ” Picosecond photoconducting Hertzian dipoles,’’ Appl. Phys. Lett. Vol.45, P284-286, Aug., 1984
    [1.6] Q. Wu and X. C. Zhang, “Free-space electro-optics sampling of mid-infrared pulses,’’ Appl. Phys. Lett., Vol.71, No. 10, P1285-1286 Sep., 1997
    [1.7] Pardo, J.R.; Cernicharo, J.; Serabyn, E., “Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter
    8 applications,” IEEE Transactions on Antennas and Propagation, Vol.49, No.12, pp.1683 – 1694, Dec. 2001
    [1.8] Gaidis, M.C.; Pickett, H.M.; Smith, C.D.; Martin, S.C.; Smith, R.P.; Siegel, P.H., “A 2.5-THz receiver front end for spaceborne applications,” IEEE Transactions on Microwave Theory and Techniques, Vol.48, No.4, pp.733 – 739, April 2000
    [1.9] Humphreys, K.; Loughran, J.P.; Gradziel, M.; Lanigan, W.; Ward, T.; Murphy, J.A.; O''Sullivan, C., ”Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,’’ Proc. EMBC, Vol1, 2004 pp. 1302 - 1305, 2004
    [1.10] N. Sarukura, H. Ohtake, Z. Liu, T. Itatani, T. Sugaya, T. Nakagawa, and Y. Sugiyama, Japn. J. Appl. Phys. 37, L125, 1998.
    [2.1] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
    [2.2] Kirk Steven Giboney, Ph. D. Thesis, University of California at Santa Barbara, 1995
    [2.3] Yi-Jen Chiu, Ph. D. Thesis, University of California at Santa Barbara, 1999
    [2.4] 許晉瑋,金屬-半導體-金屬 行波式光偵測器,國立臺灣大學/光電工程學研究所博士論文(2001)
    [2.5] Y.-L. Huang and C.-K. Sun, “Nonlinear saturation behaviors of high-speed p-i-n photodetectors,” J. of Lightwave Techno., vol. 18, pp. 203-212, Feb., 2000.
    [2.6] K. J. Williams, R. D. Esman, and M. Degenais, “Nonlinearities in p-i-n Microwave Photodetectors,” J. of Lightwave Techno., vol. 14, pp. 84-96, Jan., 1996.
    [2.7] S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast Carrier Dynamics in III-V Semiconductors Grown by Molecular-Beam Epitaxy at Very Low Substrate Temperatures,” IEEE J. of Quantum Electronics, vol. 28, pp.2464-2472, 1992.
    24
    [2.8] J. P. Ibbetson, Ph. D. Thesis, University of California at Santa Barbara, 1998.
    [2.9] J.-W. Shi, Y.-H. Chen, K. G. Gan, Y. J. Chiu, John. E. Bowers, M.-C. Tien, T.-M. Liu, and C.-K. Sun, “Nonlinear Behaviors of Low-Temperature-Grown GaAs-Based Photodetectors Around 1.3-μm Telecommunication Wavelength” IEEE Photon. Tech. Lett., vol. 16, pp.242-244, Jan., 2004.
    [2.10] C.-K. Sun, Y.-Hung Chen, J.-W. Shi, Y.-J. Chiu, K. G. Gan, and J. E. Bowers, “Electron relaxation and transport dynamics in low-temperature-grown GaAs under 1eV optical excitation” Appl. Phys. Lett., vol. 83, pp. 911-913, Aug., 2003.
    [3.1] Kirk Steven Giboney, Ph. D. Thesis, University of California at Santa Barbara, 1995
    [3.2] Yi-Jen Chiu, Ph. D. Thesis, University of California at Santa Barbara, 1999
    [3.3] 許晉瑋,金屬-半導體-金屬 行波式光偵測器,國立臺灣大學/光電工程學研究所博士論文(2001)
    [3.4] 莊達人, “VLSI製造技術”, 高立圖書公司(1995)
    [4.1] Yi-Jen Chiu, Ph. D. Thesis, University of California at Santa Barbara, 1999
    [4.2] Z.-Y. Chen, Y.-L. Wang, Y. Liu, and N.-H. Zhu, “Two-port Calibration of test fixtures with OSL method” in Proc. of 2002 3rd International Conference on Microwave and Millimeter Wave Technology, pp. 138-141.
    [5.1] Jones, K.A.; Hilton, K.P.; Crouch, M.A.; Hughes, B.T.; Cole, M.W.; Han, W.Y., ”Analyses of ohmic contacts to GaAs based microwave HBTs,” High Performance Electron Devices for Microwave and Optoelectronic Applications, 1995. EDMO., IEEE 1995 Workshop on 27 Nov. 1995 Page(s):25
    [5.2] F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “A asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett., vol. 13, pp. 845-847, Aug., 2001
    [5.3] S. Demiguel, L. Giraudet, L. Joulaud, J. Decobert, F. Blache, V. Coupe, F. Jorge, P. Pagnod-Rossiaux, E. Boucherez, M. Achouche, and F. Devaux, “Evanescently Coupled Photodiodes Integrating a Double-Stage Taper for 40-Gb/s Applications-Compared Performance With Side-Illuminated Photodiodes,” J. of Lightwave Technol., vol. 20, pp. 2004-2014, Dec., 2002.
    [5.4] S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very High-Responsivity Evanescently Coupled Photodiodes Integrating a Short Planar Multimode Waveguide for High-Speed Applications,” IEEE Photon. Technol. Lett., vol. 15, pp.1761-1763, Dec., 2003
    [5.5] Ming-Chun Tien; Hsu-Hao Chang; Ja-Yu Lu; Li-Jin Chen; Shih-Yuan Chen; Ruey-Beei Wu; Wei-Sheng Liu; Chyi, J.-I.; Chi-Kuang Sun, “Device saturation behavior of submillimeter-wave membrane photonic transmitters,’’ IEEE Photon. Technol. Lett., Vol.16, No.3, pp.873 – 875, March, 2004
    [5.6] H. Eisele, A. Rydberg, and G. I. Haddad, “Recent Advancesin the Performance of InP Gunn Device and GaAs Tunnet Diodes for the 100-300GHz Frequency Range and Above’’, IEEE Trans. Microwave Theory Tech., vol. 48, pp.626-631, 2000
    [5.7] Yu. P. Gousev, I.V Altukhov, K. A. Korolev, V. P. Sinis, and M. S. Kagan, E. E. Haller, M. A. Odnoblyudov, I. N. Yassievich, and K.-A. chao, “Widely tunable Continue-Wave THz Laser,” Appl. Phys. Lett., vol.75, pp.757-759, 1999
    [5.8] M. Reddy, S. C. Martin, A. C. Molnar, R. E. Muller, R. P. Smith, P. H. Siegel, M. J. Mondry, M. J. W. Rodwell, H. Kroemer, and S. J Allen, Jr. “Monolithic Schottky-Collector Resonant Tunnel Diode Oscillator Arrays to 650GHz’’, IEEE Electron Device Lett., vol. 18, pp.2229-2240, 1995
    [5.9] Gaidis, M.C.; Pickett, H.M.; Smith, C.D.; Martin, S.C.; Smith, R.P.; Siegel, P.H.”A 2.5-THz receiver front end for spaceborne applications,” IEEE Transactions on Microwave Theory and Techniques, Vol.48, No.4, pp.733 – 739, April 2000

    QR CODE
    :::