| 研究生: |
林伯駿 Bo-Chun Lin |
|---|---|
| 論文名稱: |
跳躍子flea插入let-7 complex基因座可能導致mir-100之低表現量,進而造成果蠅存活率降低和發育遲緩 Hypo-expression of mir-100, reduced survival rate, and delayed development in Drosophila melanogaster may result from the insertion of flea transposon in let-7 complex locus |
| 指導教授: |
葉淑丹
Shu-Dan Yeh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | miRNA 、cluster 、mir-100 、let-7 complex 、果蠅發育 |
| 外文關鍵詞: | microRNAs, miRNA cluster, mir-100, let-7 Complex, Drosophila development |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
跳躍子flea插入let-7 complex 基因座可能導致mir-100之低表現量,進而造成果蠅存活率降低和發育遲緩
摘要
miRNA是小片段的RNA分子,約含21至23個鹼基,可藉由與mRNA的互補配對,抑制蛋白質轉譯。而miRNA cluster,可藉由poly-cistronic轉錄方式使miRNA表現。在let-7 cluster裡包含miR-100、let-7、miR-125這三個miRNA,這個cluster在前人的研究中被證實會在果蠅幼蟲轉變成蛹時表現。但是,一個以microarray的方式偵測miRNA表現的研究中,發現Canton S (CS-UCI)品系中miR-100在前蛹期表現量較其它miRNA或其它品系miR-100表現量較低之現象。本研究以該研究所使用之品系為對象,並以Oregon R (OR-UCI)和得自於長庚大學皮海薇老師實驗室的Canton S (CS-PI)探討miR-100表現量異於同cluster之其他miRNA的原因。經由一系列PCR實驗,發現在CS-UCI的mir-100與let-7區間有一段插入的片段,定序後進行BLAST序列比對,發現這個插入片段有98%的序列與flea跳躍因子相似,因此推測flea可能造成miR-100的低表現量。在不同溫度的蛹存活率測試中,觀察CS-UCI的蛹存活率,於高溫環境下顯著較低,因此推測miR-100可能具有影響蛹於高溫環境中耐受力的功能,這一個獨特的現象,讓我們可以了解miR-100在果蠅生長中扮演的角色。
關鍵詞:miRNA、cluster、mir-100、let-7 complex、果蠅發育
Hypo-expression of mir-100, reduced survival rate, and delayed development in Drosophila melanogaster may result from the insertion of flea transposon in let-7 complex locus
ABSTRACT
MicroRNAs (miRNAs) are 21~23nt long RNAs, which regulate gene expression at post-transcriptional level by inhibiting the translation of target mRNAs through complementary pairing. Clustered miRNAs, such as let-7 cluster, are suggested to exhibit coordinate expression via a poly-cistronic transcription or inhibit translation. Let-7 cluster, consisting of miR-100, let-7, and miR-125, are increasingly expressed during larva-to-pupa transition in Drosophila melanogaster. However, the expression level of miR-100 was show to be lower than those of let-7 and miR-125 in Canton S strain as well as those of miR-100 in other strains in previous studies. In this study, we investigated the cause and the effects of low expression level of miR-100 in Canton S strain from UCI (CS-UCI) by using Oregon R (OR) strain and Canton S strains from Dr. Hai-wei Pi’s lab (CS-PI) as control strains. In qRT-PCR experiments, the expression level of miR-100 was confirmed to be low in CS-UCI but high in CS-PI and OR. A series of PCR experiments in genomic DNA revealed the presence of a flea element between mir-100 and let-7 in CS-UCI but not in CS-PI, suggesting the lower expression level of miR-100 might result from this insertion. Base on our preliminary tests, CS-UCI pupae showed significantly lower survival rate at 30℃ than the other two strains, suggesting miR-100 might involve in buffering heat stress during pupal development. The detail molecular mechanism on low expression level of miR-100 and its phenotypic effects in Drosophila development require further investigation.
Key words: microRNAs、miRNA cluster、mir-100、let-7 Complex、Drosophila development
Bashirullah A, Pasquinelli AE, Kiger AA, Perrimon N, Ruvkun G, Thummel CS. 2003. Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. In. Developmental Biology. p. 1-8.
Blumenthal T. 2004. Operons in eukaryotes. In. Brief Funct Genomic Proteomic. p. 199-211.
Chawla G, Sokol NS. 2012. Hormonal activation of let-7-C microRNAs via EcR is required for adult Drosophila melanogaster morphology and function. In. Development. p. 1788-1797.
Chen WF, Liu ZX, Li TJ, Zhang RF, Xue YB, Zhong Y, Bai WW, Zhou DS, Zhao ZW. 2014. Regulation of Drosophila circadian rhythms by miRNA let-7 is mediated by a regulatory cycle. Nature Communications 5.
Doerks T, Copley RR, Schultz J, Ponting CP, Bork P. 2002. Systematic identification of novel protein domain families associated with nuclear functions. In. Genome Res. p. 47-56.
Fagegaltier D, Konig A, Gordon A, Lai EC, Gingeras TR,
Hannon GJ, Shcherbata HR. 2014. A Genome-Wide Survey of
Sexually Dimorphic Expression of Drosophila miRNAs Identifies the Steroid Hormone-Induced miRNA let-7 as a Regulator of Sexual Identity. Genetics 198:647-U339.
Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR,
King N, Degnan BM, Rokhsar DS, Bartel DP. 2008. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455:1193-1197.
Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC. 2001. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23-34.
Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. 2001. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. In. Science. p. 834-838.
Lee RC, Feinbaum RL, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. In. Cell. p. 843-854.
Li C, Gao YP, Zhang K, Chen J, Han SQ, Feng B, Wang R, Chen LB. 2015. Multiple Roles of MicroRNA-100 in Human Cancer and its Therapeutic Potential. Cellular Physiology and Biochemistry 37:2143-2159.
Marco A, Ninova M, Ronshaugen M, Griffiths-Jones S. 2013. Clusters of microRNAs emerge by new hairpins in existing transcripts. In. Nucleic Acids Res. p. 7745-7752.
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. In. Nature. p. 901-906.
Rubio M, Belles X. 2013. Subtle roles of microRNAs let-7, miR-100 and miR-125 on wing morphogenesis in hemimetabolan metamorphosis. In. J Insect Physiol. p. 1089-1094.
Ryazansky SS, Gvozdev VA, Berezikov E. 2011. Evidence for post-transcriptional regulation of clustered microRNAs in Drosophila. In. BMC Genomics. p. 371.
Satou Y, Mineta K, Ogasawara M, Sasakura Y, Shoguchi E, Ueno K, Yamada L, Matsumoto J, Wasserscheid J, Dewar K, et al. 2008. Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and operon populations. In. Genome Biology.
Sempere LF, Sokol NS, Dubrovsky EB, Berger EM, Ambros V. 2003. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. In. Developmental Biology. p. 9-18.
Shaw WR, Armisen J, Lehrbach NJ, Miska EA. 2010. The Conserved miR-51 microRNA Family Is Redundantly Required for Embryonic Development and Pharynx Attachment in Caenorhabditis elegans. Genetics 185:897-905.
Swain P, Behura A, Dash S, Nayak SK. 2007. Serum antibody response of Indian major carp, Labeo rohita to three species of pathogenic bacteria; Aeromonas hydrophila, Edwardsiella tarda and Pseudomonas fluorescens. Veterinary Immunology and Immunopathology 117:137-141.
Tanzer A, Stadler PF. 2004. Molecular evolution of a microRNA cluster. In. J Mol Biol. p. 327-335.
Tour E, McGinnis W. 2006. Gap peptides: A new way to control embryonic patterning? In. Cell. p. 448-449.
Truscott M, Islam AB, Frolov MV. 2016. Novel regulation and functional interaction of polycistronic miRNAs. In. RNA. p. 129-138.
Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ. 2009. The deep evolution of metazoan microRNAs. Evolution & Development 11:50-68.
Xu W, San Lucas A, Wang Z, Liu Y. 2014. Identifying microRNA targets in different gene regions. In. BMC Bioinformatics. p. S4.
Yang L, Yang G, Zhang X. 2014. The miR-100-mediated pathway regulates apoptosis against virus infection in shrimp. In. Fish Shellfish Immunol. p. 146-153.
Yeh SD, von Grotthuss M, Gandasetiawan KA, Jayasekera S, Xia XQ, Chan C, Jayaswal V,
Ranz JM. 2014. Functional Divergence of the miRNA Transcriptome at the Onset of Drosophila Metamorphosis. Molecular Biology and Evolution 31:2557-2572.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis
Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33:1870-1874.
Griffiths-Jones S. 2006. miRBase: the microRNA sequence database. Methods Mol Biol
342:129-138.
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. 2006. miRBase:
microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140-144.
Kozomara A, Griffiths-Jones S. 2014. miRBase: annotating high confidence microRNAs
using deep sequencing data. Nucleic Acids Res 42:D68-73.