跳到主要內容

簡易檢索 / 詳目顯示

研究生: 傅哲賢
Zhe-Xian Fu
論文名稱: 基樁抗壓與抗拉之模型試驗
COMPARING TENSILE AND COMPRESSIVE BEARING BEHAVIRS OF PILE IN SAND BY MODEL TEST
指導教授: 黃俊鴻
Jin-Hung Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 211
中文關鍵詞: 壓力樁拉力樁模型試驗砂土摩擦力樁載重試驗
外文關鍵詞: compressive pile, pile load test, friction, model test, sand, tensile pile
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基樁在承壓與受拉拔時,因受力機制的不同,使得兩者的行為有所差異,過去有許多學者指出,基樁受拉拔時之樁身摩擦力約為受壓時的50%。因此本研究以模型樁載重試驗探討基樁受壓與受拉時承載力與摩擦力之差異,在乾砂與飽和砂中進行反覆壓、拉樁與反覆拉、壓樁載重試驗,總計進行五次反覆作用,以探討壓樁與拉樁的承載力與摩擦力之變化,最後將壓樁與拉樁之承載力與位移以及摩擦力與位移關係繪製成正規化曲線,得到抗拉與抗壓之承載力與摩擦力的比值,比較基樁抗壓與抗拉阻抗之差異。本模型試驗結果顯示,抗拉與抗壓之承載力和摩擦力的比值會隨樁頭位移增加而趨於變小。在福隆乾砂試體中極限抗拉承載力約為極限抗壓承載力的15%,飽和福隆砂試體中,極限抗拉承載力則約為極限抗壓承載力的23%。就摩擦力而言,樁體受拉時,摩擦力分佈會隨深度往下而增加;受壓時,摩擦力分佈則是中間段大兩端小之現象。在乾砂與飽和砂中,拉樁摩擦力約為壓樁的22%及30%,顯示抗壓之摩擦力大於抗拉之摩擦力。


    This paper presents the results of model test for tensile and compressive bearing behavior of pile in sands. A model pile was statically pushed into a dry sand or a saturated sand, then, there are two kinds of pile load tests were performed. One is the pile was loaded first in compression and then loaded in tension, and then the compression-tension load cycle was repeated five times. The other case is the pile was loaded first in tension and then loaded in compression, and then the tension-compression load cycle was repeated five times. The measured end-bearing capacity and skin friction of the piles in tension and compression were then compared. The tension-compression capacity and friction of the pile varies with the pile head displacement. The larger the displacement, the smaller the ratio. It is found that the friction increases from the top to the bottom for tensile pile, however, the frictions at the top and bottom are smaller than the friction at the middle part for compressive pile.

    摘要 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 XV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與流程 2 1.3 論文架構 2 第二章 文獻回顧 4 2.1 現地基樁載重試驗 4 2.2 基樁承壓之行為與機制 6 2.2.1 受力機制 6 2.2.2 承載力理論 7 2.3 基樁拉拔之行為與機制 13 2.3.1 受力機制 13 2.3.2 拉拔承載力理論 14 2.4 基樁與土壤之界面摩擦行為 18 2.4.1 表面粗糙度在摩擦行為之影響 18 2.4.2 樁徑在摩擦行為之影響 23 2.4.3 側向土壓力係數在摩擦行為之影響 24 2.5 基樁承壓與拉拔之差異 25 第三章 室內試驗 32 3.1 試驗規劃與設計 32 3.2 試驗土樣及其基本性質 32 3.3 試驗儀器設備 34 3.4 試驗方法與步驟 53 3.4.1 試體製作 53 3.4.2 量測儀器之校正 57 3.4.3 模型樁之材料試驗 66 3.4.4 模型基樁載重試驗 68 第四章 試驗結果與討論 71 4.1 福隆乾砂之樁載重試驗 71 4.1.1 反覆壓拉樁之試驗結果 71 4.1.2 反覆拉壓樁之試驗結果 104 4.2 飽和福隆砂之樁載重試驗 134 4.2.1 反覆壓拉樁之試驗結果 134 4.2.2 反覆拉壓樁之試驗結果 167 4.3 綜合分析與討論 197 第五章 結論與建議 203 5.1 結論 203 5.2 建議 204 參考文獻 206

    1. 王韋舜,「基樁抗壓與抗拉極限承載力之差異」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
    2. 王維漢,「單樁負摩擦力之行為研究」,碩士論文,國立中央大學土木工程學系,中壢(1997)。
    3. 內政部營建署,「建築物基礎構造設計規範」,中華民國大地工程學會,台北(2001)。
    4. 李建中,「試樁加載過程及結果詮釋法之探討」,地工技術雜誌,第五期,第91~97頁(1984)。
    5. 范光照、張郭益,精密量測,高立圖書有限公司,台北 (2002)。
    6. 洪正杰,「沈泥質砂土中拉力樁與壓力樁荷重行為之比較」,碩士論文,朝陽科技大學營建工程系,台中(2001)。
    7. 施國欽,大地工程學(二)基礎工程篇,文笙書局,台北(2001)。
    8. 陳泓文,「砂土坡地井樁受側向力之離心機模型試驗」,碩士論文,國立中央大學土木工程學系,中壢(1999)。
    9. 張博瑋,「基樁承壓與抗拉行為之研究」,碩士論文,國立台灣大學土木工程研究所,台北(2001)。
    10. 梁能,「基樁軸向承壓之依時行為」,博士論文,國立中央大學土木工程學系,中壢(2002)。
    11. 黃俊鴻、楊志文,「基樁載重試驗承載力判釋方法之探討與建議」,地工技術雜誌,第八十期,第5~16頁(2000)。
    12. 游俊達,「場鑄樁載重試驗結果詮釋與極限承載力之研究」,碩士論文,國立台北科技大學土木與防災研究所,台北(2000)。
    13. 廖文彬,「由模型樁試驗探討砂土層中軸向基樁摩擦行為」,碩士論文,國立台灣科技大學營建工程系,台北(1999)。
    14. 廖慶隆,「電子量測系統之基本特性及在土木工程上之應用」,中國土木水利工程學刊,第十二卷,第三期,第85~100頁(1985)。
    15. 廖新興,「黏性土壤中鑽掘樁之摩擦特性」,博士論文,國立中央大學土木工程學系,中壢(1995)。
    16. 盧玉璜,「黏性土層中基樁之摩擦行為」,碩士論文,國立中央大學土木工程學系,中壢(1993)。
    17. 藍士堯,「垂直承載樁試驗之資料分析」,碩士論文,國立台灣大學土木工程研究所,台北(2004)。
    18. 茶古文雄,「建築設計杭引拔抵抗力機構考方」,基礎工,Vol. 22, No.7, pp.26-32 (1994)。
    19. 伊藤圭典、前原雅幸,「場所打杭引拔抵抗???考察」,土木??論文集,第376?, pp.59-74 (1986)。
    20. Alawneh, A. S., “Modelling Load-Displacement Response of Driven Pile in Cohesionless Soils under Tensile Loading.” Computers and Geotechnics, Vol. 32, No.8, pp. 578-586 (2005).
    21. Altaee, A., Fellenius, B. H., and Evgin, E., “Load Transfer for Piles in Sand and the Critical Depth.” Canadian Geotechnical Journal, Vol. 30, No. 3, pp. 455-463 (1993).
    22. Amira, M., Yokoyama, Y., and Imaizumi, S., “Friction Capacity of Axially Loaded Model Pile in Sand.” Soils and Foundations, Vol. 35, No. 1, pp. 75-82 (1995).
    23. American Society for Testing Materials, “Standard Test Method for Piles Under Static Axial Compressive Load.” Annual Book of Standard, ASTM D1143-81, pp. 195-205 (1994).
    24. American Society for Testing Materials, “Standard Test Method for Testing Individual Piles Under Static Axial Tensile Load.” Annual Book of Standard, ASTM D3689-90, pp. 530-540 (1994).
    25. American Society for Testing Materials, “Standard Test Method for Young’s Modulus, Tangent Modulus, and Chord Modulus.” Annual Book of Standard, ASTM E111-82 pp. 274-279 (1994).
    26. Chattopadhyay, B. C., and Pise, P. J., “Uplift Capacity of Piles in Sand.” Journal of Geotechnical Engineering, Vol. 112, No. 9, pp. 888-904 (1986).
    27. Fellenius, B. H., “Analysis of Rresults From Routine Pile Load Tests.” Ground Engineering, Vol. 13, No. 6, pp. 19-24 (1980).
    28. Fellenius, B. H., Harris, D. E., and Anderson, D. G., “Static Loading Test on a 45 m Long Pipe Pile in Sandpoint, Idaho.” Canadian Geotechnical Journal, Vol. 41, No. 4, pp. 613-628 (2004).
    29. Fretti, C., Lo Presti D.C.F, and Pedroni, S., “A Pluvial Deposition Method to Reconstitute Well-Graded Sand Specimens.” Geotechnical Testing Journal, ASTM, Vol. 18, No. 2, pp. 292-298 (1995).
    30. Hsu, S. T., and Liao, H J., “Uplift Behavior of Cylindrical Anchors in Sand.” Canadian Geotechnical Journal, Vol. 35, No. 1, pp. 70-80 (1998).
    31. Iskander, M., El-Gharbawy, S., and Olson, R., “Performance of Suction Caissons in Sand and Clay.” Canadian Geotechnical Journal, Vol. 39, No. 3, pp. 576-584 (2002).
    32. Ismael, N. F., Member, “Analysis of Load Tests on Piles Driven Through Calcareous Desert Sands.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 12, pp. 905-908 (1999).
    33. Ismael, N. F., Klym, T. W., “Uplift and Bearing Capacity of Short Piers in Sand.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. 5, pp. 579-594 (1979).
    34. Jardine, R. J., Standing, J. R., and Chow, F. C., “Some Observations of the Effects of Time on the Capacity of Piles Driven in Sand.” Geotechnique, Vol. 56, No. 4, pp. 227-244 (2006).
    35. Kishida, H., and Uesugi, M., “Tests of the Interface between Sand and Steel in the Simple Shear Apparatus.” Geotechnique, Vol. 37, No. 1, pp. 45-52 (1987).
    36. Kezdi, A., “Pile Foundations.” Foundation Engineering Handbook, H. F. Winterkorn and H. Y. Fang, eds., Van Nostrand Reinhold, co., New York., pp. 556-600 (1975).
    37. Kulhawy, F. H., Trautmann, C. H., Beech, J. F., O’Rourke, T. D., Mcguire, W., Wood, W. A., and Capano, “Transmission Line Structure Foundation for Uplift-Compression Loading.” Report, No. EL-2789, Electric Power Research Institute, Palo Alto, California (1983).
    38. Kulhawy, F. H., “Drained Uplift Capacity of Drilled Shaft.” Proceeding of the 8th International Conference on Soil Mechanics and Foundation Engineering, Vol. 2, No. 2, pp. 167-172 (1985).
    39. Mansure, C. I., and Hunter, A. H. “Pile Test-Arkansas River project.” Proceedings, ASCE, Vol. 96, No.SM5, pp. 1545-1582 (1970).
    40. Meyerhof, G. G., and Adams, J. I., “The Ultimate Uplift Capacity of Foundation.” Canadian Geotechnical Journal, Vol. 5, No. 4, pp.225-244 (1968).
    41. Nicola, A. D., and Randolph, M. F., "Tensile and Compressive Shaft Capacity of Piles in Sand.” Journal of Geotechnical Engineering, Vol. 119, No. 12, pp. 1952-1973 (1993).
    42. Nemoto, H., Yaegashi, K., Takeuchi, Y., Nishimura, N., Matsumoto, T., and Kitiyodom, P., “Vertical Load Tests of Model Piled Rafts with Different Pile Head Connection Conditions.” Physical Modelling in Geotechnics-6th ICPMG ’06-Ng, Zhang and Wang (eds), Vol. 2, pp.853-859 (2006).
    43. O’Neill, M. W., Hawkins, R. A., and Mahar, L. J., Associate Members, “Load Transfer Mechanisms in Piles and Pile Groups.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 108, No. GT12, pp. 1605-1623 (1982).
    44. Parry, R. H., and Swin, C. W., “Effective Stress Methods of Calculating Skin Friction on Driven Piles in Soft Clay.” Ground Engineering, Vol. 10, No. 3, pp. 24-26 (1977).
    45. Potyondy, J. G., “Skin Friction between Various Soils and Construction Materials.” Geotechnique, Vol. 11, No. 4, pp. 339-353 (1961).
    46. Poulos, H. G., and Davis, E. H., Pile Foundation Analysis and Design. Wiley, New York (1980).
    47. Randolph, M. F., Dolwin, J., and Beck, R. D., “design of driven piles in sand.” Geotechnique, London, England (1993).
    48. Rojas, E., Valle, C., and Romo, M. P., “Soil-Pile Interface Model for Axially loaded Single Piles.” Soils and Foundations, Vol. 39, no.4, Aug., pp. 35-45 (1999).
    49. Salgado, R., Mitchell, J. K., and Jamiolkowski, M., “Calibration Chamber Size Effects on Penetration Resistance in Sand.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 9, pp. 878-888 (1998).
    50. Sonia, A., and Desai, C. S., “Load-Deformation Response of Axially Loaded Piles.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 113, No. 12, pp. 1483-1500 (1987).
    51. Tomlinson, M. J., Pile Design and Construction Practice. (1977).
    52. Uesugi, M., Kishida, H., and Tsubakihara, Y., “Behavior of Sand Particles in Sand-Steel Friction.” Soils and Foundations, Vol. 28, No. 1, pp. 107-118 (1988).
    53. Vesic, A. S., “Bearing Capacity of Deep Foundations in Sand.” Highway Research Board Record, No. 39, pp. 112-153 (1963).
    54. Yoshimi, Y., and Kishida, T., “Friction between Sand and Metal Surface.” Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, pp. 831-834 (1981).

    QR CODE
    :::