跳到主要內容

簡易檢索 / 詳目顯示

研究生: 盧佑樺
Yu-hua Lu
論文名稱: 二次微分法於空載全波形光達之特徵萃取與地物分類
Using Second Derivative Method for Feature Extraction and Land Cover Classification in Airborne Full-waveform LiDAR
指導教授: 蔡富安
Fuan Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 108
中文關鍵詞: 全波形光達波形擬合地物分類隨機森林分類器二次微分法
外文關鍵詞: full-waveform, LiDAR, fitting, classification, Random Forest, second derivative
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空載光達(airborne LiDAR)是種主動式對地表的量測技術,利用直接地理對位轉換距離和角度,成為精準三維坐標的點雲。近年來,一種新興的光達稱為全波形(full-waveform)光達逐漸受重視,其可記錄完整光束回傳能量值,這些記錄能量值的集合稱為波形,使用者可藉由波形分析得到更完整的地表反射物理特性與細節變化,有助於地形三維重建及地物判識。
    在處理全波形光達資料的過程,波形萃取與分析是必要的一環。本研究首先濾除背景雜訊,接著利用高斯函數配合二次微分法對波形進行擬合(fitting),並對儀器與二次微分法為初始值之擬合成果進行精度評估。接著萃取光達波形參數,包括波寬(Width)、振幅(Amplitude)、背向散射截面(Backscatter cross-section),再配合光達特徵包括正規化高程(normalized height)、強度(Intensity)與影像特徵綠指標(Greenness Index),作為地物分類的特徵。地物分類使用簡易貝氏(Naïve Bayes)與隨機森林(Random Forest)兩種分類器,並就分類成果評估精度,藉此探討全波形光達資料與一般空載光達資料於不同分類器的成效。
    本研究結果顯示,使用二次微分法提供之初始值的擬合成功率較高,擬合誤差較小,且分類成果較佳。在地物分類的部分,全波形光達所提供的參數對於植物的分析的結果顯著。另外,相較於簡易貝氏分類器,以決策樹為基礎的隨機森林分類器較適合本研究的光達地物分類。


    Airborne LiDAR is an active remote sensing system. It can transfer the distance and orientation to point cloud by direct georeferencing. A new generation of LiDAR system called Full-Waveform (FW) LiDAR which could receive the whole return signal (so-called waveform) in a ray has become popular recently. With FW LiDAR, users can obtain more information of objects by analyzing the waveform, and it is helpful for three dimensional reconstruction and land cover distinguishing.
    In the processing of FW LiDAR data, the waveform parameter extraction and analysis are the important steps. In this study, after eliminating the background noise, the Gaussian modeling function with second derivative method was used for waveform fitting. The result was compared to Gaussian fitting using the initial value provided by the instrument. Then the features extracted from the waveform, including width, amplitude, backscatter cross-section, traditional LiDAR features, normalized height and intensity, and greenness index from image were used for land cover classification. The classifiers used in this study were Naïve Bayes and Random Forest and compared with each other.
    The experimental results indicate that using the second derivative method could provide higher fitting successful rate, smaller Root Mean Square Error (RMSE) and better classification result. The land cover classification results demonstrate that full-waveform features are helpful for distinguishing different vegetation targets and the decision-tree-based Random Forest classifier is more suitable for landcover classification of LiDAR data used in this study.

    摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 x 表目錄 xiv 第1章 緒論 1 1-1 研究背景 1 1-2 全波形光達原理 3 1-3 研究動機與目的 5 1-4 論文架構 6 第2章 文獻回顧 7 2-1 擬合函數模型 7 2-2 全波形光達的應用 13 2-2-1 三維重建 13 2-2-2 全波形光達於分類上之應用 16 2-3 全波形光達儀器介紹 20 2-3-1 ALTM Pegasus 21 2-3-2 Leica ALS系列 21 2-3-3 Riegl LMS系列 22 2-3-4 Trimble Harrier56 23 2-4 光達資料格式介紹 23 第3章 研究方法 26 3-1 波形分析 26 3-1-1 資料前處理 27 3-1-2 計算初始值 28 3-1-3 波形分解與高斯擬合 29 3-2 地物分類 42 3-2-1 分類特徵 43 3-2-2 隨機森林分類(Random Forests) 44 3-2-3 簡單貝氏分類器(Naïve Bayes) 47 3-2-4 分類精度評估 48 第4章 研究資料 49 4-1 測試資料一 51 4-2 測試資料二 52 4-3 測試資料三 53 第5章 成果分析 56 5-1 波形分析 56 5-1-1 地物與波形 56 5-1-2 波形擬合 62 5-2 分類成果分析 64 5-2-1 測試資料一 64 5-2-2 測試資料二 67 5-2-3 測試資料三 73 第6章 結論與建議 78 6-1 結論 78 6-2 建議 79 參考文獻 81 附錄 85

    王匯智,2007,完整波形分析對於提升空載光達系統定位精度之研究,碩士論文,國立臺灣大學工學院土木工程學研究所。
    林郁珊,2012,應用空載全波形光達資料於波形分析與地物分類,碩士論文,國立交通大學土木工程學系。
    賴哲儇,2009,高光譜影像立方體於特徵空間之三維紋理計算,碩士論文,國立中央大學土木工程學系。
    Alexander, C., Tansey, K., Kaduk, J., Holland, D., & Tate, N. J. (2010). Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas. Isprs Journal of Photogrammetry and Remote Sensing, 65(5), 423-432. doi: DOI 10.1016/j.isprsjprs.2010.05.002
    Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. doi: Doi 10.1023/A:1010933404324
    Bretar, F., Chauve, A., Mallet, C., & Jutzi, B. (2008). Managing full-waveform lidar data: a challenging task for the forthcoming years. In: International Archive of Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China. XXXVII (Part B1), 415-420
    Briese, C., Höfle, B., Lehner, H., Wagner, W., Pfennigbauer, M., & Ullrich, A. (2008). Calibration of full-waveform airborne laser scanning data for object classification. In: Proceedings of SPIE-The International Society for Optical Engineering. 6950 (Laser Radar Technology and Applications XIII).
    Celis, M. R. (1985). A trust region strategy for nonlinear equality constrained optimization (nonlinear programming, sequential quadratic). (Ph.D. thesis), University Micriofilms International. Retrieved from http://hdl.handle.net/1911/15885
    Chauve, A., Mallet, C., Bretar, F., Durrieu, S., Pierrot-Deseilligny, M., & Puech, W. (2007). Processing Full-waveform LiDAR Data: Modelling Raw Signals. In: ISPRS Workshop on Laser Scanning and SilviLaser, Espoo, Finland. XXXVI (Part 3/W52), 102-107.
    Chauve, A., Vega, C., Durrieu, S., Bretar, F., Allouis, T., Deseilligny, M. P., & Puech, W. (2009). Advanced full-waveform lidar data echo detection: Assessing quality of derived terrain and tree height models in an alpine coniferous forest. International Journal of Remote Sensing, 30(19), 5211-5228. doi: Doi 10.1080/01431160903023009
    Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39, 1-38.
    Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711-732. doi: Doi 10.2307/2337340
    Guo, L., Chehata, N., Mallet, C., & Boukir, S. (2011). Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. Isprs Journal of Photogrammetry and Remote Sensing, 66(1), 56-66. doi: DOI 10.1016/j.isprsjprs.2010.08.007
    Heinzel, J., & Koch, B. (2011). Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation, 13(1), 152-160. doi: DOI 10.1016/j.jag.2010.09.010
    Hofle, B., & Pfeifer, N. (2007). Correction of laser scanning intensity data: Data and model-driven approaches. Isprs Journal of Photogrammetry and Remote Sensing, 62(6), 415-433. doi: DOI 10.1016/j.isprsjprs.2007.05.008
    Laky, S., Zaletnyik, P., & Toth, C. (2010). Land classification of wavelet-compressed full-waveform LiDAR data. In: International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, Saint-Mandé, France. XXXVIII (Part 3A), 115-119
    Leica. (2013). Leica ALS60 Airborne Laser Scanner. Retrieved February 20, 2013, from http://www.leica-geosystems.com/en/Leica-ALS60-Airborne-Laser-Scanner_86842.htm
    Levenberg, K. (1944). A method for the solution of certain problems in least squares Quart. Applied Math., 2, 164-168.
    Lin, Y. C., Mills, J. P., & Smith-Voysey, S. (2010). Rigorous pulse detection from full-waveform airborne laser scanning data. International Journal of Remote Sensing, 31(5), 1303-1324. doi: Doi 10.1080/01431160903380599
    Liu, X. . (2008). Airborne LiDAR for DEM generation: some critical issues. Progress in Physical Geography, 32(1), 31-49. doi: 10.1177/0309133308089496
    Mallet, C., Bretar, F., Roux, M., Soergel, U., & Heipke, C. (2011). Relevance assessment of full-waveform lidar data for urban area classification. Isprs Journal of Photogrammetry and Remote Sensing, 66(6), S71-S84. doi: DOI 10.1016/j.isprsjprs.2011.09.008
    Mallet, C., Lafarge, F., Bretar, F., Roux, M., Soergel, U., & Heipke, C. (2009). A stochastic approach for modelling airborne lidar waveforms. In: Laserscanning, Paris, France. XXXVIII, 201-206
    Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441.
    Optech. (2013). ALTM Pegasus. Retrieved February 20, 2013, from http://www.optech.ca/pegasus.htm
    Reitberger, J., Schnorr, C., Krzystek, P., & Stilla, U. (2009). 3D segmentation of single trees exploiting full waveform LIDAR data. Isprs Journal of Photogrammetry and Remote Sensing, 64(6), 561-574. doi: DOI 10.1016/j.isprsjprs.2009.04.002
    Riegl. (2013). LMS-Q680i. Retrieved February 20, 2013, from http://www.riegl.com/nc/products/airborne-scanning/produktdetail/product/scanner/23/
    Roncat, A., Bergauer, G., & Pfeifer, N. (2011). B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data. Isprs Journal of Photogrammetry and Remote Sensing, 66(4), 418-428. doi: DOI 10.1016/j.isprsjprs.2011.02.002
    Trimble. (2013). Trimble Harrier 56. Retrieved February 20, 2013, from http://www.trimble.com/imaging/Harrier-56.aspx?dtID=overview&
    Tsai, F., & Lai, J-S. (2013). Feature Extraction of Hyperspectral Image Cubes Using Three-Dimensional Gray-Level Cooccurrence. IEEE Trans. Geoscience and Remote Sensing, 51(6), 3504-3513. doi: 10.1109/TGRS.2012.2223704
    Tsai, F., & Philpot, W. (1998). Derivative analysis of hyperspectral data. Remote Sensing of Environment, 66(1), 41-51. doi: Doi 10.1016/S0034-4257(98)00032-7
    Ullrich, A., & Reichert, R. (2005). High resolution laser scanner with waveform digitization for subsequent full waveform analysis. SPIE, 5791, 82-88. doi: 10.1117/12.623847
    Wagner, W., Ullrich, A., Ducic, V., Melzer, T., & Studnicka, N. (2006). Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. Isprs Journal of Photogrammetry and Remote Sensing, 60(2), 100-112. doi: DOI 10.1016/j.isprsjprs.2005.12.001
    Wagner, W., Ullrich, A., Melzer, T., Briese, C., & Kraus, K. (2004). FROM SINGLE-PULSE TO FULL-WAVEFORM AIRBORNE LASER SCANNERS: POTENTIAL AND PRACTICAL CHALLENGES. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 35, 201-206 (Part B203)

    QR CODE
    :::