| 研究生: |
李宜桃 Yi-Tao Lee |
|---|---|
| 論文名稱: |
鹼活化還原碴漿體收縮及抑制方法之研究 Improving the shrinkage of alkali-activated reductive slag |
| 指導教授: |
黃偉慶
Wei-Hsing Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 電弧爐碴 、鹼活化劑 、收縮 、毛細管冷凝 |
| 外文關鍵詞: | electric-arc furnace slag, shrinkage, alkali-activation, capillary condense |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結構物中所使用之水泥是一種高耗能之工業,生產過程中常對環境造成污染,若能尋求良好之替代性材料,以取代水泥之需求,則在環境保護與資源的開發、利用均有正面之幫助。本文主要以電弧爐煉鋼爐碴-還原碴為研究對象,並以完全取代水泥之概念為出發點,運用鹼活化技術提昇還原碴之活性,尋求新世代的膠結材料。根據以往研究指出,添加鹼活化劑之膠結材料,具有較佳之抗壓強度發展、耐久性及抵抗化學侵蝕能力等,但卻常伴隨著速凝、乾縮量過大及鹼質粒料等缺點。
本文主要針對鹼活化還原碴漿體收縮行為機理進行探討與抑制方
法研究。在抑制收縮試驗方面,採用的抑制方法包括添加輸氣劑、減水
劑、降低水膠比、提高養護溫度等。經試驗結果顯示,以添加輸氣劑與
提高養護溫度兩種方式所得之效果最好,但會致使抗壓強度略微下降。
在收縮機理分析方面,配合相關收縮理論與微觀分析,可證實鹼活化還
原碴漿體收縮行為與內部孔隙水發生毛細管冷凝之臨界半徑及孔隙半
徑為1.25 ~ 25 nm之孔隙含量比例有關;當此範圍之孔隙含量比例愈
高,還原碴漿體收縮愈明顯。
The production of cement is a highly energy-consuming industry. The seeking for an alternative material to take place of Portland cement is always a key research issue. The purpose of this study is to evaluate the potential of electric-arc furnace clinker produced in the steel-making processes – reductive slag as a binging material for concrete. The use of alkali-activator promotes the activity of slag and results in a cementing material of the new era. Previous researcher indicated the alkali-activated slag showed the better compressive strength, durability and resistance to chemical attack. However, some problems such as rapid setting, high shrinkage, and alkali-aggregate reactions may also present .
This study aims at investigating the shrinkage mechanism of alkali-activated reductive slag and developing techniques in restraining the shrinkage of reductive slag. The proposed methods includes the addition of air entraining agent and/or water reducing agent, reduction of water/binder ratio, and elevation of curing temperature. The experimental results showed that the most effective methods were the addition of air entraining agent and the elevation of curing temperature. However, there may be detrimental effects on the compressive strength developments.
It was found that the shrinkage of alkali-activated reductive slag has to do with the critical radius, which is defined as the radius of the pores where capillary condense occurs, and the radius of pore ranging from 1.25 to 25 nm. When the proportion of the pores whose radius in the range of 1.25 ~ 25 nm is higher, the shrinkage of alkali-activated reductive will also be higher.
1.余耀藤、林平全、施延熙、黃兆龍、蔡敏行,「電弧爐煉鋼還原碴資源化應用技術手冊」,中技社綠色技術發展中心,未發行,台中 (2001)。
2. Shi, C., and Day, R. L.,〝A calorimetric study of early hydration of alkali-
slag cement,〞Cement and Concrete Research 25(6), pp. 1333-1346
(1995).
3. Shi, C., and Day, R. L.,〝Some factors affecting early hydration of alkali-
slag cement,〞Cement and Concrete Research 26(3), pp. 439-447 (1996).
4. Song, S., and Jennings, H. M.,〝Pore solution chemistry of alkali-activated
ground granulated blast-furnace slag,〞Cement and Concrete Research
29(2), pp. 159-170 (1999).
5.Jimenez, A. F., Palomo﹐J. G., and Puertas, F.,〝Alkali-activated slag mortars: Mechanical streghth behavior,〞Cement and Concrete Research
29(8), pp. 1313-1321 (1999).
6. Collins, F. G., and Sanjayan, J. G.,〝Workability and mechanical properties
of alkali activated slag concrete,〞Cement and Concrete Research 29(3),
pp. 455-458 (1999).
7. Bakharev, T., Sanjayan J. G., and Cheng, Y. B.,〝Alkali activation of
Australian slag cement,〞Cement and Concrete Research 29(1),
pp. 113-120 (1999).
8.蕭遠智,「鹼活化電弧爐還原碴之水化反應特性」,碩士論文,國立中央大學土木工程研究所,中壢 (2002)。
9.Mindess﹐S., and Young, J. F., Concrete, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, U.S.A (1981).
10.Shimomura, T., Maekawa, K.,〝Analysis of the drying shrinkage
behaviour of concrete based on the micropore structure of concrete using
a micromechanical model,〞Mag Concr Res 49 (181) pp. 303-322 (1997).
11.Jennings, H. M.,〝A model for microstructure of calcium silicate hydrate in cement paste, 〞Cement and Concrete Research 30(1),pp.101-116﹐(2000).
12.Maria, C., Garci, J., and Hamlin, H. J.﹐〝Examining the relationship between the microstructure of calcium silicate hydtate and drying shrinkage of cement pastes﹐〞Cement and Concrete Research 32(2)﹐
pp. 289-296 (2002).
13. Collins, F., and Sanjayan, J. G.,〝Effect of pore size distribution on
drying shrinkage of alkali-activated slag concrete,〞Cement and
Concrete Research 30(9), pp. 1401-1406 (2000).
14.張有義,郭蘭生譯,膠體及界面化學入門,高立,臺北市(1997)。
15. Jiry, W. A., Gardner, W. R., and Gardner, W. H.,Soil Physics,J. Wiley,
New York,pp.34-60 (1991).
16.Shimomura, T., and Maekawa, K.,〝Micromechanical model for drying
shrinkage of concrete based on the distribution function of porosity,〞in:Z. P. Bazant (Eds.), Proc. 5th International RILEM Symposium on Creep and Shrinkage of Concrete, Barcelona, Spain, E&FN Spon, London, pp. 133-139 (1993).
17.Bakharev, T., Sanjayan, J. G., and Cheng, Y. B.,〝Effect of admixtures on
properties of alkali-activated slag concrete,〞 Cement and Concrete Research 30(9), pp. 1367-1374 (2000).
18.Bentur,A.,〝Effect of curing temperature on the pore structure of
tricalcium silicate pastes, 〞 Journal of Colloid and Interface Science
29(10), pp.1619-1625 (1999).
19.Bakharev, T., Sanjayan, J. G., and Cheng, Y. B.,〝Effect of elevated
temperature curing on properties of alkali-activated slag concrete﹐〞
Cement and Concrete Research 29(10), pp. 1619-1625 (1999).
20.黃兆龍,「固態廢料處理研究方案之二-爐石在混凝土的應用」,財團
法人台灣營建研究中心,台北 (1985)。
21. Shi, C., and Li,Y.,〝Investigation on some factors affecting the
characteristics of alkali-phosphorus slag cement,〞Cement and Concrete
Research 19(4), pp. 527-533 (1989).
22.Wang, S. D., Scrivener, K. L., and Pratt, P. L.,〝Factors affecting the
strength of alkali-activated slag﹐〞Cement and Concrete Research 24(6)﹐
pp. 1033-1043 (1994).
23.Mehta, P. K., Concrete Structure,Properties,andMaterials, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, U.S.A (1986).
24.Shi, C., and Xie, P.,〝Interface between cement paste and quartz sand in
alkali-activated slag mortars﹐〞Cement and Concrete Research 28(6)﹐
pp. 887-896 (1998).
25.Krizan, D., and Zivanovic, B.,〝Effects of dosage and modulus of water glass on early hydration of alkali-slag cement,〞Cement and Concrete Research 32 (7), pp. 1181-1188 (2002).
26.Wang, S. D., and Scrivener, K. L.,〝Hydration products of alkali activated
slag cement﹐〞Cement and Concrete Research 25(3), pp. 561-571 (1995).
27.傅國柱,「還原碴取代部份水泥之研究」,碩士論文,國立中央大學
土木工程研究所,中壢 (2002)。
28.Palomo, A., Grutzeck, M. W., and Blanco, M. T.,〝Alkali-activated fly
ashes﹐a cement for the future﹐〞Cement and Concrete Research 29(8)﹐
pp. 1323-1329 (1999).
29.Yongde, L. and Yao, S.,〝Preliminary study on combined-alkali-slag paste
materials,〞Cement and Concrete Research 30(6), pp. 963-966 (2000).
30. Shi, C.,〝Strength﹐pore structure and permeability of alkali-activated slag
mortars﹐〞Cement and Concrete Research 26(12), pp. 1789-1799 (1996).
31. Katz, A.〝Microscopic study of alkali-activated fly ash,〞Cement and
Concrete Research 28(2), pp. 197-208 (1998).
32. McCarter, W. J., Chrisp, T. M., and Starrs, G.,〝The early hydration of
alkali-activated slag: developments in monitoring techniques,〞Cement
and Concrete Composites 21, pp. 277-283 (1999).
33. Jimenez, A. F., and Puertas, F.,〝Alkali-activated slag cements: Kinetic
studies﹐〞Cement and Concrete Research 27(3), pp. 359-368 (1997).
34. Collins, F. and Sanjayan, G. J.〝Cracking tendency of alkali-activated
slag concrete subjected to restrained shrinkage,〞Cement and Concrete
Research 30(5), pp. 791-798 (2000).
35 .Roy, D. M.,〝Alkali-activation cements-Opportunities and challenges,〞
Cement and Concrete Research 29(2), pp. 249-254 (1999).
36. Ortega, E. A., Cheeseman, C., Knight, J., and Loizidou, M.,〝Properties
of alkali-activated clinoptilolite,〞Cement and Concrete Research
30(10), pp. 1641-1646 (2000).
37. Puertas, F., Ramirez, S. M., Alonso, S., and Vazquez, T.〝Alkali-activated
fly ash/slag cement: Strength behaviour and hydration products,〞Cement
and Concrete Research 30(10), pp. 1625-1632 (2000).
38.Young, J. F.,〝Physical mechanisms and their mathematical
descriptions﹐〞in: Z. P. Bazant (Eds.), Mathematical Modelling of Creep
and Shrinkage of Concrete, Wiley, pp.44-78 (1986).
39. Li, D.,Chen, Y.,Shen, J., Su, J., and Wu, X.,〝The influence of alkalinity on activation and microstructure of fly ash,〞Cement and Concrete Research 30(6), pp. 881-886 (2000).
40. Collins, F., and Sanjayan, J. G.,〝Early age strength and workability of
slag pastes activated by NaOH and Na2CO3,〞Cement and Concrete Research 28 (5), pp. 655-664 (1998).
41. Alonso, S., and Palomo,A.,〝Alkaline activation of metakaolin and
calcium hydroxide mixtures: influence of temperature,activator
concentration and solid ratio,〞Materials Letters 47, pp. 55-62 (2001).
42. Douglas, E., and Brandstetr, J.,〝A preliminary study on the alkali
activation of ground granulated blast-furnace slag,〞Cement and
Concrete Research 20(5), pp.746-756 (1990).
43. Douglas , E., Bilodeau, A., Brandstetr, J., and Malhotra,V. M. ,〝Alkali
activated ground granulated blast-furnace slag concrete: preliminary investigation,〞Cement and Concrete Research 21 (1), pp. 101-108
(1991).
44. Collins, F. G., and Sanjayan, J. G.,〝Strength and shrinkage properties of
alkali-activated slag concrete containing porous coarse aggregate,〞
Cement and Concrete Research 29(4), pp. 607-610 (1999).
45. Collins, F., Sanjayan, G. J.,〝Microcracking and strength development of
alkali activated slag concrete,〞Cement and Concrete Composites 23,
pp. 345-352 (2001).
46. Aquino, W., Lange, D. A., and Olek, J.,〝The influence of metakaolin and
silica fume on the chemistry of alkali-silica reaction products﹐〞Cement
and Concrete Composites 23, pp. 485-493 (2001).
47. Kim, J. C., and Hong, S. Y.,〝Liquid concentration changes during slag
cement hydration by alkali activation,〞Cement and Concrete Research
31(2), pp. 283-285 (2001).
48. Poon, S. C., Kou, S. C., Lam, L., and Lin, Z. S.〝Activation of fly ash
/cement systems using calcium sulfate anhydrite(CaSO4)﹐〞Cement
and Concrete Research 31(6), pp. 873-881 (2001).
49. Ma,W., Liu, C., Brown, P. W., and Komarneni, S.,〝Pore structures of fly
ashes activated by Ca(OH)2 and CaSO4.2H2O,〞Cement and Concrete
Research 25 (2), pp. 417-425 (1995).
50. Shi, C., and Day, W. L.,〝Acceleration of the reactivity of fly ash by
chemical activation,〞Cement and Concrete Research 25(1), pp. 15-21,
(1995).