| 研究生: |
楊淳聿 Chun-Yu Yang |
|---|---|
| 論文名稱: |
結合指標評估及數值模式分析伏流水區域尺度潛勢與工程尺度可取水量 Integrating index overlay and numerical methods to analyze regional-scale water resource potential and engineering-scale discharge |
| 指導教授: |
倪春發
Chuen-Fa Ni |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 伏流水 、指標評估 、HYDRUS 3D 、克利金 、地表地下水交互作用 |
| 外文關鍵詞: | Hyporheic flow, Idex overlay, HYDRUS 3D, Kriging, Srface water and groundwater interaction |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
伏流水(Hyporheic flow)為儲存或流動於河道下方砂礫石層中的水源,屬地表與地下水交換作用區域。伏流水因河床沉積物過濾,具有較佳水質的優點,也因此被視為汛期的重要備援水源。伏流水的蘊藏量及如何取水以達最佳效益等問題,一直是伏流水資源開發受關切的重點。本研究之目的係以指標評估方法結合數值及經驗模式,推估與量化分析臺灣本島地下水區中,不同空間尺度之伏流水相對可開發潛能,本研究同時以蘭陽平原及屏東平原地下水區為例,以既有工程設計規模,進一步量化推估兩個地下水區,伏流水開發潛能。本研究利用ArcGIS配合克利金(Kriging)法完成臺灣主要河川之伏流水潛勢評估,參考GOD(Groundwater occurrence rating, Overlying lithology rating, and Depth to water rating)潛勢評估方法,計算並修正各影響因子之權重關係。在本研究中,選擇的評估因子為流通係數(Transmissivity)、坡度(Slope)、Delta H(河川水位與地下水位差值)、水系密度(Drainage-length density)與地表至地下水位深度(Depth to Groundwater)。最後以指標權重獲得全臺灣各地下水區主要河川伏流水潛勢圖。為了評估數值模擬與經驗公式推估伏流設計取水量差異,本研究採用清水溪河段的現地材料試驗結果,利用經驗公式與HYDRUS數值模式評估清水溪河段工程尺度案例。量化伏流水取水量則考慮既有伏流水工程設施做為評估基準,假設伏流水設施上下游距離一公里即不影響取水與地表水源,以羅東堰工程設施評估蘭陽平原伏流水出水量;高屏溪則利用高屏溪伏流水取水設施(高屏攔河堰、竹寮取水站、九曲堂取水站及會結取水站)設計出水量與潛勢地圖進行分析,量化屏東平原伏流水潛能。本研究結果顯示,臺灣伏流水最高潛勢區為蘭陽平原;最低潛勢區則為桃園中壢台地。數值模擬推估之設計取水量約為經驗公式解的1.1至1.4倍,以羅東堰取水設計為基礎,推估蘭陽溪伏流水潛能約為654.72萬CMD至910.2萬CMD;以高屏溪沿岸取水設施為設計基礎,推估高屏溪伏流水潛能約為252.58萬CMD至623.11萬CMD。
Hyporheic zone locates in the interaction area between surface water and groundwater. Hyporheic flow in this zone is one of the relatively stable water resources that is storing in the gravel layer below the river channel and has the advantage of great water quality. The potential and effective management of water resources in hyporheic zones are important issues for regional water resource assessments. The study aims to integrate index overlay and numerical methods to assess the potential of hyporheic water resources in groundwater basins of Taiwan. In this study, the Kriging module in ArcGIS and GOD (Groundwater occurrence rating, Overlying lithology rating, and Depth to water rating) method for potential assessments are employed to conduct the interpretation of the hyporheic water resource potential. The factors in GOD includes the transmissivity, slope, difference between groundwater and river levels (Delta H), drainage-length density, and depth to groundwater. The comparison of the analytical solution and HYDRUS numerical simulation is conducted based on the data taken from the engineering-scale site on the Qingshui River. The study considers Lanyang and Pingdong plains to be the selected groundwater basins for quantifying the available water resource from hyporheic flows. The study assumes that the influence of water intake facilities can be neglected with a distance of 1 km from two facilities. Based on the existing water intake facilities in Lanyang and Gaoping rivers, including Lodong weir, Gaoping riverside dike, Jhuliao water-pumping station, Jiuqutang water-pumping station, and Huijie water station, the total discharge of hyporheic flow are calculated for different rivers. The index overlay method shows that the Lanyang Plain is the highest potential area of the hyporheic flow. However, Taoyuan tableland is the lowest potential area of the hyporheic flow. The designed water intake estimated by numerical simulation is about 1.1 to 1.4 times higher than that obtained from the analytical solution. This study estimated water resource of hyporheic flows in Lanyang River in Lanyang plain is from 6.54 million CMD to 9.10 million CMD (Cubic meter per day). Based on the design of the water intake facilities along the Gaoping River, the water resource of hyporheic flows along the Gaoping river in Pingtung Plain is about 2.53 million CMD to 6.23 million CMD.
[1] 許少華、劉建榮、倪春發、紀棓能、林淇平,「環境變遷與土壤異質性對河道伏流水資源之影響分析―以濁水溪西螺河段為例」,臺灣水利,59(1),26-36頁,2011。
[2] 呂紹民,「利用水平井抽取伏流水之數值模擬研究-以興田地區為例」,國立成功大學水利及海洋工程學系,碩士論文,2014。
[3] Winter, T. C., “Ground water and surface water: a single resource”, DIANE Publishing Inc, Vol 1139, 1998.
[4] Naiman, R. J., & Bilby, R. E., River ecology and management. Lessons from the Pacific Coastal Ecoregion, Springer-Verlag, New York, 1998.
[5] Hancock, P. J., “Human impacts on the stream–groundwater exchange zone.”, Environmental Management, Vol 29, pp. 763-781, 2002.
[6] Cardenas, M. B., “Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus”, Water Resources Research, Vol 51, pp. 3601-3616, 2015.
[7] Sebben, M. L., Werner, A. D., Liggett, J. E., Partington, D., Simmons, C. T., “On the testing of fully integrated surface–subsurface hydrological models”, Hydrological Processes, Vol 27, pp. 1276-1285, 2013.
[8] Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L., Wörman, A., “Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications”, Reviews of Geophysics, Vol 52, pp. 603-679, 2014.
[9] Trauth, N., Schmidt, C., Vieweg, M., Maier, U., Fleckenstein, J. H., “Hyporheic transport and biogeochemical reactions in pool‐riffle systems under varying ambient groundwater flow conditions”, Journal of Geophysical Research: Biogeosciences, Vol 119, pp. 910-928, 2014.
[10] Harvey, J., Gooseff., “M.River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins”, Water Resources Research, Vol 51, pp. 6893-6922, 2015.
[11] Paniconi, C., Putti, M., “Physically based modeling in catchment hydrology at 50: Survey and outlook.”, Water Resources Research, Vol 51, pp. 7090-7129, 2015.
[12] 經濟部水利署河川知識服務網,https://e-river.wra.gov.tw/default.aspx
[13] Gogu, R. C., & Dassargues, A., “Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods”, Environmental geology, Vol 39, pp. 549-559, 2000.
[14] Kihumba, A. M., Vanclooster, M., Longo, J. N., “Assessing groundwater vulnerability in the Kinshasa region, DR Congo, using a calibrated DRASTIC model”, Journal of African Earth Sciences, Vol 126, pp. 13-22, 2017.
[15] Hamutoko, J. T., Wanke, H., Voigt, H. J., “Estimation of groundwater vulnerability to pollution based on DRASTIC in the Niipele sub-basin of the Cuvelai Etosha Basin, Namibia”, Physics and Chemistry of the Earth, Parts A/B/C, 2016.
[16] Zghibi, A., Merzougui, A., Chenini, I., Ergaieg, K., Zouhri, L., Tarhouni, J., “Groundwater vulnerability analysis of Tunisian coastal aquifer: An application of DRASTIC index method in GIS environment”, Groundwater for Sustainable Development, Vol 2, pp. 169, 2016.
[17] Kazakis, N., Voudouris, K. S., “Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: modifying the DRASTIC method using quantitative parameters”, Journal of Hydrology, Vol 525, pp. 13-25, 2015.
[18] Foster, S. S. D., Fundamental Concepts in Aquifer Vulnerability, Pollution Risk and Protection Strategy, Netherlands Organization for Applied Scientific Research, 1987.
[19] Harvey, J., Gooseff, M., “River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins”, Water Resources Research, Vol 51, pp. 6893-6922, 2015.
[20] Huang, C. C., Yeh, H. F., Lin, H. I., Lee, S. T., Hsu, K. C., & Lee, C. H., “Groundwater recharge and exploitative potential zone mapping using GIS and GOD techniques”, Environmental earth sciences, Vol 68, pp. 267-280, 2013.
[21] Neuman, S. P., Saturated-unsaturated seepage by finite elements, In J. HYDRAUL. DIV., PROC., ASCE, 1973.
[22] 黃智昭、林宏奕、李振誥、陳昭旭、張閔翔、王永絢,「高屏溪流域上游地下水補注潛勢與開發潛能區之劃分」,經濟部中央地質調查所,29,127-172頁,2016。
[23] Van Stempvoort, D. V., Ewert, L., Wassenaar, L., “Aquifer vulnerability index: a GIS-compatible method for groundwater vulnerability mapping”, Canadian Water Resources Journal, Vol 18, pp. 25-37, 1993.
[24] Nadiri, A. A., Gharekhani, M., & Khatibi, R., “Mapping aquifer vulnerability indices using artificial intelligence-running multiple frameworks (AIMF) with supervised and unsupervised learning”, Water Resources Management, Vol 32, pp. 3023-3040, 2018.
[25] Civita, M., Contamination vulnerability mapping of the aquifer: theory and practice, Quaderni di Tecniche di Protezione Ambientale, Pitagora, 1994.
[26] Kumar, M., Duffy, C. J., & Salvage, K. M., “A second-order accurate, finite volume–based, integrated hydrologic modeling (FIHM) framework for simulation of surface and subsurface flow”, Vadose Zone Journal, Vol 8, pp. 873-890, 2009.
[27] Sappa, G., & Lega, S., “Comparison between different vulnerability analysis methods applied to a volcanic groundwater system”, International Association for Engineering Geology and the Environment, pp. 2291-2298, Vancouver, Canada, 1998.
[28] Doerfliger, N., Jeannin, P. Y., & Zwahlen, F., “Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools”, Environmental Geology, Vol 39, pp. 165-176, 1999.
[29] Vías, J. M., Andreo, B., Perles, M. J., Carrasco, F., Vadillo, I., & Jiménez, P., “Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method”, Hydrogeology Journal, Vol 14, pp. 912-925, 2006.
[30] Kavouri, K., Plagnes, V., Tremoulet, J., Dörfliger, N., Rejiba, F., & Marchet, P., “PaPRIKa: a method for estimating karst resource and source vulnerability—application to the Ouysse karst system (southwest France)”, Hydrogeology Journal, Vol 19, pp. 339-353, 2011.
[31] Goldscheider, N., Klute, M., Sturm, S., & Hötzl, H., “The PI method–a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers”, Z Angew Geol, Vol 46, pp. 157-166, 2000.
[32] 供水水文地質手冊編寫組,供水水文地質手冊(第二冊),地質出版社(北京),1977。
[33] Smedema, L. K., Vlotman, W. F., & Rycroft, D., Modern land drainage: Planning, design and management of agricultural drainage systems, CRC Press, 2004.
[34] 台灣省水利局規劃,集集共同引計畫「濁水溪西螺河段伏流水相關研究」,1997。
[35] 達西工程顧問股份有限公司,高屏溪伏流水及傍河取水先期調查試驗,經濟部水利署南區水資源局,2012。
[36] 謝博涵,「輻射井設施應用於曾文水庫淤泥取水試驗研究」.,屏東科技大學土木工程系所,碩士論文,2014。
[37] 巨廷工程顧問股份有限公司,後龍溪流域伏流水調查規劃,經濟部水利署水利規劃試驗所,2017。
[38] 江崇榮、李昭順,「淺談集水廊道開發水資源」,第333-347頁,濁水溪沖積扇地下水及水資源研討會論文集,臺灣,1996。
[39] 劉怡安,「集水廊道最佳設計之研究」,臺灣大學土木工程學研究所,碩士論文,2011。
[40] 鄭智羽,「利用野外調查配合數值模擬探討伏流水層上湧下滲之分佈」,成功大學水利及海洋工程學系,碩士論文,2017。
[41] 呂紹民,「利用水平井抽取伏流水之數值模擬研究-以興田地區為例」, 成功大學水利及海洋工程學系,碩士論文,2014。
[42] 國立雲林科技大學水土資源及防災科技研究中心,臺灣地區伏流水開發對地下水環境之調查評估,經濟部水利署水利規劃試驗所,2013。
[43] Šimůnek, J., Van Genuchten, M. T., & Šejna, M., “Recent developments and applications of the HYDRUS computer software packages”, Vadose Zone Journal, Vol 15, 2016.
[44] Šimůnek, J., van Genuchten, M. T., & Šejna, M., “Development and applications of the HYDRUS and STANMOD software packages and related codes”, Vadose Zone Journal, Vol 7, pp. 587-600, 2008.
[45] Antonov, D., Mallants, D., Šimůnek, J., & Karastanev, D., “Application of the HYDRUS (2D/3D) Inverse Solution Module for Estimating the Soil Hydraulic Parameters of a Quaternary Complex in Northern Bulgaria”, HYDRUS Software Applications to Subsurface Flow and Contaminant Transport Problems, 47, 2013.
[46] Bray, E. N., & Dunne, T., “Subsurface flow in lowland river gravel bars”, Water Resources Research, Vol 53, pp. 7773-7797, 2017.
[47] 國立雲林科技大學水土資源及防災科技研究中心,臺灣地區伏流水開發對地下水環境之調查評估,經濟部水利署水利規劃試驗所,2015。
[48] 賴慈華、陳瑞娥、陸挽中、黃智昭、林燕初、費立沅、江崇榮,「臺灣地區水文地質分區特性」,經濟部中央地質調查所,2007。
[49] 能邦科技顧問公司,臺灣地區地下水補注估算,經濟部水資源局,2000。
[50] 中興工程顧問股分有限公司,蘭陽地區地面地下水調配及管理模式整合初步規劃,經濟部水利署水利規劃試驗所,2008。
[51] 財團法人成大研究發展基金會,氣候變遷下臺灣九大地下水區地下水潛能變化之研究(1/2),經濟部水利署,2014。
[52] 水資會,臺灣地下水資源,經濟部水資源統一規劃委員會,1992。
[53] 國立臺灣大學,桃園地區地面地下水聯合管理整合模式評估與建構(1/2),經濟部水利署,2007。
[54] 能邦科技顧問公司,台東地區地面地下水聯合運用可行性評估,經濟部水利署水利規劃試驗所,2012。
[55] 能邦科技顧問公司,花蓮地區地面地下水聯合運用研究,經濟部水利署水利規劃試驗所,2010。
[56] Šimůnek, J., Van Genuchten, M. T., & Šejna, M., “The HYDRUS software package for simulating two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media”, Technical manual, version, 1, pp. 241, 2006.
[57] Abedini, M. J., Nasseri, M., & Ansari, A., “Cluster-based ordinary kriging of piezometric head in West Texas/New Mexico–Testing of hypothesis”, Journal of Hydrology, Vol 351, pp. 360-367, 2008.
[58] Ashrafzadeh, A., Roshandel, F., Khaledian, M., Vazifedoust, M., & Rezaei, M., “Assessment of groundwater salinity risk using kriging methods: A case study in northern Iran”, Agricultural Water Management, Vol 178, pp. 215-224, 2006.
[59] Belkhiri, L., Mouni, L., Narany, T. S., & Tiri, A., “Evaluation of potential health risk of heavy metals in groundwater using the integration of indicator kriging and multivariate statistical method”, Groundwater for Sustainable Development, Vol 4, pp. 12-22, 2007.
[60] Bargaoui, Z. K., Chebbi, A., “Comparison of two kriging interpolation methods applied to spatiotemporal rainfall”, Journal of Hydrology, Vol 365, pp. 56-73, 2009.
[61] Castellarin, A., “Regional prediction of flow-duration curves using a three-dimensional kriging”, Journal of hydrology, Vol 513, pp. 179-191, 2014.
[62] Desbarats, A. J., Logan, C. E., Hinton, M. J., & Sharpe, D. R., “On the kriging of water table elevations using collateral information from a digital elevation model”, Journal of Hydrology, Vol 255, pp. 25-38, 2002.
[63] Jang, C. S., Chen, S. K., & Cheng, Y. T., “Spatial estimation of the thickness of low permeability topsoil materials by using a combined ordinary-indicator kriging approach with multiple thresholds”, Engineering Geology, Vol 207, pp. 56-65, 2006.
[64] Lee, J. J., Liu, C. W., Jang, C. S., & Liang, C. P., “Zonal management of multi-purpose use of water from arsenic-affected aquifers by using a multi-variable indicator kriging approach”, Journal of Hydrology, Vol 359, pp. 260-273, 2008.
[65] Rivest, M., Marcotte, D., & Pasquier, P., “Hydraulic head field estimation using kriging with an external drift: A way to consider conceptual model information”, Journal of Hydrology, Vol 361, pp. 349-361, 2008.
[66] Rivest, M., & Marcotte, D., “Kriging groundwater solute concentrations using flow coordinates and nonstationary covariance functions”, Journal of hydrology, Vol 472, pp. 238-253, 2012.