跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉貴銘
KUEI-MING LIU
論文名稱: 波源疊加法在二維聲場之分析
Analysis of Two-Dimension Acoustics Using the Method of Superposition
指導教授: 鄔蜀威
Shu-Wei Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 38
中文關鍵詞: 波源疊加法活塞聲場分析
外文關鍵詞: Superposition Method, Piston
相關次數: 點閱:28下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之目的在探討利用波源疊加法分析在不同邊界條件下之放射及散射聲場,以往研究振動體都為緩慢變動的邊界條件。而本論文對變動較為驟烈的邊界條件進行分析,
    ,由測試結果顯示,所得到的數值解與邊界元素法的數值解相比極為準確,證實此方法在二維聲場問題上,為一有效適用於各種邊界條件的數值方法。
    文中對圓形剛體進行散射分析,將就不同波數條件下進行測試,發現所得數值解與解析解相當一致。因此,驗證利用本文方法對剛體散射分析亦為一有效準確數值方法。


    A Superpostion Method for Analysis of Two-Dimension Acoustics

    目 錄 頁次 中文摘要 I 誌謝 II 目錄 III 圖目錄 V 表目錄 VI 符號說明 VII 一、緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 本文架構 4 二、疊加法公式推導 5 2.1 公式推導 5 2.2 公式轉換 8 2.3 數值演算 9 三、實例測試與討論 12 3.1 圓形振動體的聲場放射 12 3.2 長方形振動體的聲場放射 14 3.3 活塞的聲場分析 18 四、聲場散射分析與討論 23 4.1 聲場散射公式 23 4.2 聲場散射分析 26 五、結論 30 參考文獻 32 附錄A 附錄B


    ``A Variational Formulation of Damped
    Acousto-Structural Vibration Problem," Journal of Sound and
    Vibration, Vol. 4, pp. 172-186.
    2.Hunt, J. T., Knittel, M. R.,and Barach, D. (1974)
    ``Finite Element Approach to Acoustics Radiation from Elastics Structure,"
    The Journal of Acoustical Society of America, Vol. 55, No. 2, pp. 269-280.
    3.Hunt, J. T., Knittel, M. R., Nichols, C. S., and Barach, D. (1975)
    ``Finite Element Approach to Acoustic Scattering From Elastics Structure,"
    The Journal of Acoustical Society of America, Vol. 57, No. 2, pp. 287-299.
    4.Kandidov, V. P. and Khristochevskii, S. A. (1978)
    ``Determination ofthe Pressure of a Fluid on a Cylinder by the Finite Element
    Method," Soviet Physics-Acoustics, Vol. 24, No. 3, PP. 392-395.
    5.Petyl, M. (1982)
    ``Finite Element Techniques for
    Acoustics," in: R. G. White and J. G. Walker, eds.,Noise and
    Vibration, Ellis Horwood Limited, Chichester, West Sussex.
    6.Melvyn, S. M. (1965)
    ``A Finite Element Method Applies to the Vibration of Submerged Structures,"
    J. Ship Researc, Vol. 9, No. 1, pp. 11-12.
    7.Petyl, M., Lea, J., and Koopmann, G (1976)
    ``A Finite Element Method for Determing the Acoustic Modes of Irregular Shaped
    CAVITIES," Journal of Sound and Vibration, Vol. 45, pp. 495-502
    8.Joppa, P. D. and Fyfe, I. M. (1978)
    ``A Finite Element Analysis of the Impedance Properties of Irregular Shaped Cavities with Absorptive Boundaries," Journal of Sound and Vibration, Vol. 56, pp. 61-69.
    9.Liu, W. K (1981) ``Finite Element Procedures for Fluid-Structure
    Interations and Application to Liquid Storage Tank," Nuclear
    Engineering and Design, Vol. 65, pp. 221-238.
    10.Liu, W. K. and Ma, D. C. (1982) ``Computer Implementation Aspects for
    Fluid-Structure Interactions Problem," Computer Methods in Applied
    Mechanics and Engineering, Vol. 31, pp. 129-148.
    11.Chen, L. H., and Schweikert, D. G. (1963)
    ``Sound Radiation from an Arbitary Body," The Journal of Acoustical Society of America, Vol. 35, No. 10, pp. 1626-1632.
    12.Chertock, G. (1964)
    ``Sound Radiation from Vibration Surface," The
    Journal of Acoustical Society of America, Vol. 36, No. 7, pp. 1305-1313.
    13.Copley, L. G. (1967)
    ``Integral Equation Method for Radiation from Vibrating Bodies," The Journal of Acoustical Society of America, Vol. 41, No. 4, pp. 807-816.
    14.Copley, L. G.( 1968)
    ``Fundamental Result Concerning Integral
    Representations in Acoustic Radiation," The Journal of Acoustical
    Society of America, Vol. 44, No. 1, pp. 28-32.
    15.Shaw, R. P. (1988)
    ``Integral Equation Method in Acoustics," in: C. A. Brebbia, ed., Boundary Element X, Vol. 4: Geomechanics, Wave Propagation and
    Vibrations, Sprinter-Veriag, London, pp. 221-244.
    16.A. Boag, Y. Leviatan, and A. Boag(1988)
    ``Analysis of acoustic scattering from fluid cylinders using a multifilament source model," The Journal of Acoustical Society of
    America, Vol. 83, pp. 1-8.
    17.G. Koopmann, L. Song, J. Fahnline (1989)
    ``A method for computing acoustic fields based on the
    principle of wave superposition," The Journal of Acoustical Society of
    America, Vol. 86, pp. 2433-2438.
    18.D. T. Wilton,I. C. Mathews and R. A. Jeans (1993)
    ``A clarification of nonexistence problems with superposition method," The Journal of Acoustical Society of America, Vol. 94, pp. 1676-1680.
    19.R. Jeans and I. C. Mathews(1992)
    ``The wave superposition method as a robust technique for computing acoustic fields," The Journal of Acoustical Society of America, Vol. 92, pp. 1156-1166.
    20.R D. Miller, E. T. Moyer, JR, H. Huang and H. Uberall (1991)
    ``A comparison between the boundary element method
    and the wave superposition approach for the analysis of the scattering
    fields from rigid bodies and elastics shells," The Journal of Acoustical Society of America, Vol. 89, pp. 2185-2196.
    21.Chenshaw, C. W, (1962)
    National Physical Laboratory Mathematical
    Tables, Her Majesty''s Stationery office, London, England.
    22.李訓良 (2002)
    ``奇異項重建法在二維聲場邊界元素分析之應用,"
    國立中央大學機械工程研究所碩士論文, 中壢, 台灣
    23. Bowman, J. J., Senior, T. B. A. and Uslenghi, P. L. E. (1987)
    Electromagnetic and Acoustic Scattering by Simple Shape},
    Cambridge/Hemisphere, New York.

    QR CODE
    :::