| 研究生: |
莊欣蓓 Hsin-pei Chuang |
|---|---|
| 論文名稱: |
以同調結構照明顯微術進行散射樣本解析度之提升 Resolution improvement in scattering samples based on coherent structured illumination microscopy. |
| 指導教授: |
陳思妤
Szu-yu Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 解析度 、同調 、結構照明顯微術 、顯微術 |
| 外文關鍵詞: | resolution, coherent, structured illumination microscopy, microscopy |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光學顯微鏡具備了非侵入式量測之優點,所以被廣泛應用在生物、材料等領域中可用來觀測與度量,但遠場光學顯微技術會受到光的波動性之影響,使得橫向解析度大約只能達到波長的一半,隨著科技越來越進步,對於光學顯微技術解析能力的要求也逐漸提高。
本文將會簡介目前最普遍使用的遠場超解析度顯微術-結構照明顯微術,與其影像的重建原理,因傳統式結構照明顯微術只能觀測具有螢光特性的樣本,所以開發出一套散射式結構照明顯微技術並搭配新的演算法,不但能提升顯微系統的解析度,對於樣本也無光破壞之問題,本系統主要是運用兩道平行光在像平面上作干涉,產生出具有結構性的照明光來激發樣品,藉由取得不同條紋方向及相位的散射影像來解出高頻率資訊,利用我們所架設之系統來觀察金奈米粒子,解析度僅能獲得1.2倍的提升,與理論值為1.44倍有些落差,將會在本文中探討實驗誤差的因素。
Optical microscopies have been applied widely for observations and measurements in fields of biology, materials, etc., mainly because of its non-invasive nature. However, the wave properties of light have limited the lateral resolutions of far-field optical microscopies to half of its excitation wavelength. Yet, as technology has greatly advanced, the expectations for the resolving power of optical microscopies have also grown a lot higher.
This article will introduce “Structured Illumination Microscopy (SIM),” a commonly applied far-field and super-resolution microscopy technique, and the principles of its image reconstruction.Since conventional structured illumination microscopies can only be used to observe samples with fluorescent properties, we’ve set up a coherent structured illumination microscopy system, and with the use of a phase-step algorithm, not only will the system’s resolution improve, it will also prevent photo bleaching in samples. In our system, a structured illumination pattern is produced by having two parallel lights interfere on the image plane, which is then used to excite the sample. And by obtaining the scattering images of different pattern directions and phases, we can solve the high frequency information. After setting up the system, we observed gold-nanoparticles, yet the resolution is enhanced only up to a factor of 1.2, which doesn’t match up with the theoretical value, 1.44. We will discuss the reasons of experimental errors later in this thesis.
[1] R. Heintzmann and C. G. Cremer, "Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating," in BiOS Europe'98, pp. 185-196, 1999.
[2] M. Abramowitz, " Fluorescence Microscopy: The Essentials," Olympus America, Incorporated, Precision Instrument Division, 1993.
[3] S. Wischnitzer, "Introduction to electron microscopy," 1970.
[4] C. J. Chen, "Introduction to scanning tunneling microscopy," Oxford University Press, 1993.
[5] F. Zernike, "Phase contrast, a new method for the microscopic observation of transparent objects part II," Physica, vol. 9, pp. 974-986,1942.
[6] G. Nomarski, "Microinterféromètre différentiel à ondes polarisées," J. Phys. Radium 16, 9S-11S, 1955.
[7] M. Minsky, "Memoir on inventing the confocal scanning microscope," Scanning, vol. 10, pp. 128-138, 1988.
[8] http://www.uhasselt.be/UH/BIOMED-en/Biosensor-research-@-BIOMED/Principle-of-Confocal-Microscopy.html
[9] E. Abbe, "Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,"Archiv für mikroskopische Anatomie, vol. 9, pp. 413-418, 1873.
[10] S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy," Optics letters, vol. 19, pp. 780-782, 1994.
[11] C. Cremer and T. Cremer, "Considerations on a laser-scanning-microscope with high resolution and depth of field," Microscopica acta, pp. 31-44, 1974.
[12] M. J. Rust, M. Bates, and X. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nature methods, vol. 3, pp. 793-796, 2006.
[13] Huang, W. Wang, M. Bates, and X. Zhuang, "Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy," Science, vol. 319, pp. 810-813, 2008.
[14] S. T. Hess, T. P. Girirajan, and M. D. Mason, "Ultra-high resolution imaging by fluorescence photoactivation localization microscopy," Biophysical journal, vol. 91, pp. 4258-4272, 2006.
[15] M. G. Gustafsson, D. A. Agard, and J. W. Sedat, "Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses," in IS&T/SPIE's Symposium on Electronic Imaging: Science & Technology, pp. 147-156, 1995.
[16] B. Harke, J. Keller, C. K. Ullal, V. Westphal, and S. W. Hell, "Resolution scaling in STED microscopy," Optics express, vol. 16, pp. 4154-4162, 2008.
[17] B. A. Truong-Quang and P. F. Lenne, "Membrane microdomains: from seeing to understanding," Frontiers in plant science, vol. 5, 2014.
[18] M. G. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," Journal of microscopy, vol. 198, pp. 82-87, 2000.
[19] T. Kim, D. Gweon, and J.-H. Lee, "Enhancement of fluorescence confocal scanning microscopy lateral resolution by use of structured illumination," Measurement Science and Technology, vol. 20, p. 055501, 2009.
[20] B. R. Masters and A. A. Thaer, "Real-time scanning slit confocal microscopy of the in vivo human cornea," Applied optics, vol. 33, pp. 695-701, 1994.
[21] W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science, vol. 248, pp. 73-76, 1990.
[22] http://ansom.research.pdx.edu/introduction/multi-photon-non-linear-optical -microscopy/
[23] http://www.samwoosc.co.kr/Nikon/A1R%20MP.htm
[24] G. Zhu, J. Van Howe, M. Durst, W. Zipfel, and C. Xu, "Simultaneous spatial and temporal focusing of femtosecond pulses," Optics Express, vol. 13, pp. 2153-2159, 2005.
[25] M. E. Durst, G. Zhu, and C. Xu, "Simultaneous spatial and temporal focusing in nonlinear microscopy," Optics communications, vol. 281, pp. 1796-1805, 2008.
[26] K. Isobe, T. Takeda, K. Mochizuki, Q. Song, A. Suda, F. Kannari, et al., "Enhancement of lateral resolution and optical sectioning capability of two-photon fluorescence microscopy by combining temporal-focusing with structured illumination," Biomedical optics express, vol. 4, pp. 2396-2410, 2013.
[27] http://www.doitpoms.ac.uk/tlplib/diffraction/image.php
[28] http://zeiss-campus.magnet.fsu.edu/articles/basics/resolution.html
[29] J. Goodman, "Introduction to Fourier optics," 2008.
[30] http://www.aandb.com.tw/Page0004/fl_04_ls_55.html
[31] http://abrc.sinica.edu.tw/icm/app_out/main/theorem.php
[32] M. W. Davidson and M. Abramowitz, "Optical microscopy," Encyclopedia of imaging science and technology, 2002.
[33] M. Pluta, "Advanced Light Microscopy, Volume 3: Measuring Techniques," Elsevier,1989.
[34] B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, et al., "Coherent super-resolution microscopy via laterally structured illumination," Micron, vol. 38, pp. 150-157, 2007.
[35] S. Chowdhury, A. H. Dhalla, and J. Izatt, "Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples," Biomedical optics express, vol. 3, pp. 1841-1854, 2012.
[36] http://en.wikipedia.org/wiki/Optical_resolution
[37] P. Bao, A. G. Frutos, C. Greef, J. Lahiri, U. Muller, T. C. Peterson, et al., "High-sensitivity detection of DNA hybridization on microarrays using resonance light scattering," Analytical chemistry, vol. 74, pp. 1792-1797, 2002.
[38] R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. J. Parak, "Biological applications of gold nanoparticles," Chemical Society Reviews, vol. 37, pp. 1896-1908, 2008.
[39] K. Wicker, O. Mandula, G. Best, R. Fiolka, and R. Heintzmann, "Phase optimisation for structured illumination microscopy," Optics express, vol. 21, pp. 2032-2049, 2013.
[40] Y. D. Kim, M. Ahn, T. Kim, H. Yoo, and D. Gweon, "Design and analysis of a cross-type structured-illumination confocal microscope for high speed and high resolution," Measurement Science and Technology, vol. 23, p. 105403, 2012.