跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭信宏
Shin-Horng Kuo
論文名稱: 上行非正交多重接取窄頻物聯網系統中頻譜效率最大化之子載波分配及功率控制
Subcarrier Allocation and Power Control for Spectral Efficiency Maximization in Uplink NOMA NB-IoT Systems
指導教授: 陳永芳
Yung-Fang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 47
中文關鍵詞: 窄頻物聯網非正交多重接取子載波分配功率控制
外文關鍵詞: Narrowband Internet of Things (NB-IoT), Non-Orthogonal Multiple Access (NOMA), subcarrier allocation, power control
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,可連網裝置的數量有著爆炸性的增長。對此,窄頻物聯網(NB-IoT)系統及相關規格應運而生。本篇論文將上行窄頻物聯網系統和非正交多重接取(NOMA)系統結合,並利用一套有效的資源分配演算法,進一步提升頻譜效率和同時可服務裝置的數量。本篇論文著重在頻段內(in-band)的部署模式,並與獨立(stand-alone)模式比較。由於頻譜洩漏,除了使用同一個子載波資源的兩個裝置會互相干擾外,不同子載波內的裝置也會互相干擾。而因為頻段內模式的窄頻物聯網系統是佔用一個長期演進技術(LTE)系統的一個實體資源區塊(PRB),因此窄頻物聯網系統和長期演進技術系統的訊號也會互相干擾。本論文的演算法分為兩個部分,分別是子載波分配及傳送功率控制。將模擬結果和現存之正交多重接取(OMA)窄頻物聯網系統比較,顯示窄頻物聯網系統在結合非正交多重接取系統後,頻譜效率有顯著的提升。


    In recent years, there is a rapid increase in the number of network-connectable devices. In this regard, Narrowband Interference of Things (NB-IoT) systems and their specifications are developed. For improving the spectral efficiency and servicing more devices, we combine uplink NB-IoT systems and Non-Orthogonal Multiple Access (NOMA) systems with efficient resource allocation algorithms. In this thesis, we focus on the systems deployed as the in-band mode, then compare the results with the stand-alone mode. Due to spectral leakage, besides the mutual interference between two devices using the same subcarrier, the interference among different subcarriers exists as well. Furthermore, the signals from NB-IoT systems and Long-Term Evolution (LTE) systems would interfere to each other since NB-IoT systems occupy one LTE physical resource block (PRB) in the in-band mode. Our algorithm in this thesis contains two parts. The first part is to allocate subcarriers to UEs with maximum transmit power. The power control in the second part is implemented according to the subcarrier allocation result from the first part. Simulation results by comparison to the Orthogonal Multiple Access (OMA) NB-IoT systems show that the spectral efficiency is improved significantly in the proposed uplink NOMA NB-IoT systems.

    論文摘要 i Abstract ii 致謝 iv Contents v List of Figures vii List of Tables viii Chapter1. Introduction - 1 - 1.1. NB-IoT - 1 - 1.2. NOMA - 3 - 1.3. Review of Literature - 4 - 1.4. Organization - 5 - 1.5. List of Abbreviations - 5 - 1.6. Notation - 6 - Chapter2. System Model and Problem Formulation - 9 - 2.1. System Model - 9 - 2.2. Problem Formulation - 12 - Chapter3. Subcarrier Allocation and Power Control - 14 - 3.1. Subcarrier Allocation - 15 - 3.1.1. User Equipment Selection - 15 - 3.1.2. Subcarrier Allocation - 17 - 3.2. Power Control - 19 - Chapter4. Complexity Analysis - 24 - Chapter5. Simulation Model and Results - 24 - 5.1. Simulation Model - 24 - 5.2. Simulation Results - 27 - Chapter6. Conclusion - 32 - Reference - 33 -

    [1] A. Bakshi, L. Chen, K. Srinivasan, C. E. Koksal and A. Eryilmaz, "EMIT: An Efficient MAC Paradigm for the Internet of Things," in IEEE/ACM Transactions on Networking, vol. 27, no. 4, pp. 1572-1583, Aug. 2019.
    [2] S. Duangsuwan, A. Takarn, R. Nujankaew and P. Jamjareegulgarn, “A study of Air Pollution Smart Sensors LPWAN via NB-IoT for Thailand Smart Cities 4.0,” 2018 10th International Conference on Knowledge and Smart Technology (KST), Chiang Mai, 2018, pp. 206-209.
    [3] Y. Li, X. Cheng, Y. Cao, D. Wang and L. Yang, “Smart Choice for the Smart Grid: Narrowband Internet of Things (NB-IoT),” in IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1505-1515, June 2018.
    [4] H. Zhang, J. Li, B. Wen, Y. Xun and J. Liu, “Connecting Intelligent Things in Smart Hospitals Using NB-IoT,” in IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1550-1560, June 2018.
    [5] New Work Item: NarrowBand IOT (NB-IOT). TSG RAN Meeting #69, 2015. 3GPP. [Online]. Available: {http://www.3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR_69/Docs/RP-151621.zip}.
    [6] R. Ratasuk, N. Mangalvedhe, Y. Zhang, M. Robert and J. Koskinen, “Overview of narrowband IoT in LTE Rel-13,” 2016 IEEE Conference on Standards for Communications and Networking (CSCN), Berlin, 2016, pp. 1-7.
    [7] Y. -. E. Wang et al., “A Primer on 3GPP Narrowband Internet of Things,” in IEEE Communications Magazine, vol. 55, no. 3, pp. 117-123, Mar. 2017.
    [8] R. Ratasuk, B. Vejlgaard, N. Mangalvedhe and A. Ghosh, “NB-IoT system for M2M communication,” 2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Doha, 2016, pp. 428-432.
    [9] M. Lauridsen, I. Z. Kovacs, P. Mogensen, M. Sorensen and S. Holst, “Coverage and Capacity Analysis of LTE-M and NB-IoT in a Rural Area,” 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, 2016, pp. 1-5.
    [10] A. Adhikary, X. Lin and Y. -. E. Wang, “Performance Evaluation of NB-IoT Coverage,” 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, 2016, pp. 1-5.
    [11] S. Ha, H. Seo, Y, Moon, D. Lee and J. Jeong, “A Novel Solution for NB-IoT Cell Coverage Expansion,” 2018 Global Internet of Things Summit (GIoTS), Bilbao, 2018, pp. 1-5.
    [12] P. Andres-Maldonado, P. Ameigeiras, J. Prados-Garzon, J. J. Ramos-Munoz, J. Navarro-Ortiz and J. M. Lopez-Soler, “Analytic Analysis of Narrowband IoT Coverage Enhancement Approaches,” 2018 Global Internet of Things Summit (GIoTS), Bilbao, 2018, pp. 1-6.
    [13] NB-IoT – System Level Evaluation and Comparison – Standalone, document R1-157398, 3GPP, Ericsson, 2015.
    [14] NB-IoT – Capacity Evaluation, document R1-157248, 3GPP, Nokia Networks, 2015.
    [15] A. E. Mostafa, Y. Zhou and V. W. S. Wong, “Connectivity maximization for narrowband IoT systems with NOMA,” 2017 IEEE International Conference on Communications (ICC), Paris, 2017, pp. 1-6.
    [16] J. Oh and H. Song, “Study on the Effect of LTE on the Coexistence of NB-IoT,” 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, 2018, pp. 610-612.
    [17] H. Kim, S. Cho, J. Oh and G. Jo, “Analysis of LTE and NB-IoT coexistence,” 2017 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, 2017, pp. 870-872.
    [18] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Res. Logistics Quart., vol. 2, nos. 1-2, pp. 83-97, Mar. 1955. doi: 10.1002/nav.3800020109.
    [19] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge Univ. Press, 2004.
    [20] Wei Yu and R. Lui, “Dual methods for nonconvex spectrum optimization of multicarrier systems,” in IEEE Transactions on Communications, vol. 54, no. 7, pp. 1310-1322, July 2006.
    [21] S. H. Chae, S. Jeon and C. Jeong, “Efficient Resource Allocation for IoT Cellular Networks in the Presence of Inter-Band Interference,” in IEEE Transactions on Communications, vol. 67, no. 6, pp. 4299-4308, June 2019.
    [22] User Equipments (UE) Radio Transmission and Reception, document TS 36.101, 3GPP, Sep. 2017.

    QR CODE
    :::