| 研究生: |
田傑仁 Chieh-Jen Tien |
|---|---|
| 論文名稱: |
層狀地質介質溶質傳輸之解析解 Analytical solutions for solute transport in layered geological media |
| 指導教授: |
陳瑞昇
Jui-Sheng Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 層狀介質 、移流-延散方程式 、解析解 |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
汙染物在層狀介質的傳輸行為經常可以在自然環境或人造環境觀察到,例如汙染物經過層狀土壤、掩埋襯墊、人工障壁等,故汙染物在層狀介質的傳輸行為為重要議題。本研究推導一維層狀地質介質中移流-延散方程式之解析解,方程式考慮移流傳輸、延散作用、線性平衡吸附,以及溶質一階衰減反應等影響。解析解主要利用Laplace轉換消去時間微分項和廣義型積分轉換(generalized integral transform)消去空間微分項,使微分方程式轉換為代數方程式,再進行一系列逆轉換可求得時間域下之解。此解析解與有限差分等數值方法進行驗證工作,目前在模擬時間較大或兩層介質Pelect number相差較小情況下兩者濃度分布曲線可重合進行驗證,在模擬時間較小或兩層Pelect number相差較大情況下解析解與數值模式產生顯著誤差。本研究提出之解析方法可擴展至層狀介質非平衡吸附傳輸、層狀介質多物種傳輸之解析解。
Contaminant transport in layered geological media is often observed, either in natural environments such as stratified soils, or in constructed environments such as landfill clay liner and barrier system. This study presents an analytical solution for one-dimensional advection-dispersion equation in layered geological media. The governing equations include terms accounting for advection, dispersion, linear equilibrium sorption, and first order decay processes. The analytical solution is derived by using the Laplace transform with respect to time and the generalized integral transform technique with respect to the spatial coordinate. The analytical solutions are verified against the numerical solutions using a finite difference scheme. In the case of large time or the small difference of Pelect number between two layers, the result shows agreement between the analytical and numerical solution. Current and future developers of transport model may extend the ideas of solution method expounded to develop analytical models for problem of coupled nonequilibrium sorption or multi-species transport in layered geological media.
[1] van Genuchten, M.Th. and Alves, W.J., “Analytical solutions of the one-dimensional convective-dispersive solute transport equation”, U.S. Department of Agriculture, Technical Bulletin, No. 1661, 1982.
[2] Batu, V., “A generalized two-dimensional analytical solution for hydrodynamic dispersion in bounded media with the first-type boundary condition at the source”, Water Resour. Res., Vol. 25(6), pp. 1125-1132, 1989.
[3] Batu, V., “A generalized two-dimensional analytical solute transport model in bounded media for flux-type finite multiple sources”, Water Resour. Res., Vol. 29(8), pp. 2881-2892, 1993.
[4] Batu, V., “A generalized three-dimensional analytical solute transport model for multiple rectangular first-type sources”, J. Hydrol., Vol. 174, pp. 57-82, 1996.
[5] Leij, F.J., Skaggs, T.H., and van Genuchten, M.Th., “Analytical solution for solute transport in three-dimensional semi-infinite porous media”, Water Resour. Res., Vol. 27(10), pp. 2719-2733, 1991.
[6] Leij, F.J., Toride, N., and van Genuchten, M.Th., “Analytical solutions for non-equilibrium solute transport in three-dimensional porous media”, J. Hydrol., Vol. 151(2-4), pp. 193-228, 1993.
[7] Park, E. and Zhan, H., “Analytical solutions of contaminant transport from finite one-, two, three-dimensional sources in a finite-thickness aquifer”, J. Contam. Hydrol., Vol. 53(1-2), pp. 41-61, 2001.
[8] Chen, J.S., Ni, C.F., Liang, C.P., and Chiang, C.C., “Analytical power series solution for contaminant transport with hyperbolic asymptotic distance-dependent dispersivity”, J. Hydrol., Vol. 362(1-2), pp. 142-149, 2008.
[9] Chen, J.S., Ni, C.F., and Liang, C.P., “Analytical power series solutions to the two-dimensional advection-dispersion equation with distance-dependent dispersivities”, Hydrol. Process., Vol. 22(24), pp. 4670-4678, 2008.
[10] Zhan, H., Wen, Z., and Gao, G., “An analytical solution of two-dimensional reactive solute transport in an aquifer-aquitard system”, Water Resour. Res. Vol. 45, doi:10.1029/2008WR007479, 2009.
[11] Lauren, S., http://www.flickr.com/photos/laurenscire/4515801557/.
[12] Li, Y.C., and Cleall, P.J., “Analytical solutions for advective-dispersive solute transport in double-layered finite porous media”, Int. J. Numer. Anal. Methods Geomech., Vol. 35, pp. 438-460, 2011.
[13] Shamir, U.Y. and Harleman, D.R.F., “Dispersion in layered porous media”, Proc. Am. Soc. Civil Eng. Hydr. Div. , Vol. 93, pp. 236-260, 1967.
[14] Parlange, J.Y. and Starr, J.L., “Dispersion in soil column: effect of boundary conditions and irreversible reactions”, Soil Sci. Soc. Am. J., Vol. 42, pp. 15-18, 1978.
[15] Parlange, J.Y., Barry, D.A. and Starr. J.L., “Comments on “Boundary conditions for displacement experiments through short laboratory soil columns” ”, Soil Sci. Soc. Am. J., Vol. 49(5), pp. 1325, 1985.
[16] Parlange, J.Y., Starr, J.L., van Genuchten, M.Th., Barry, D.A., and Parker, J.C., “Exit condition for miscible displacement experiments in finite columns”, Soil Sci. , Vol. 153(3), pp. 165-171, 1992.
[17] Al-Niami, A.N.S. and Rushton, K.R., “Dispersion in stratified porous media: analytical solutions”, Water Resour. Res., Vol. 15(5), pp. 1044-1048, 1979.
[18] Gureghian, A.B. and Jansen, G., “One-dimensional analytical solutions for the migration of a three-member radionuclide decay chain in a multilayered geological medium”, Water Resour. Res., Vol. 21(5), pp. 733-742, 1985.
[19] Barry, D.A. and Parker, J.C., “Approximations for solute transport through porous media with flow transverse to layering”, Transp. Porous Media, Vol. 2, pp. 65-82, 1987.
[20] van Genuchten, M.Th. and Parker, J.C., “Boundary conditions for displacement experiments through short laboratory soil columns”, Soil Sci. Soc. Am. J., Vol. 48(4), pp. 703-708, 1984.
[21] Parker, J.C. and van Genuchten, M.Th., “Flux-averaged and volume-averaged concentrations in continuum approaches to solute transport”, Water Resour. Res., Vol. 20(7), pp. 866-872, 1984.
[22] Kreft, A. and Zuber, A., “Comment on “Flux averaged and volume averaged concentrations in continuum approaches to solute transport””, Water Resour Res., Vol. 22, pp. 1157 -1158, 1986.
[23] Leij, F.J., Dane, J.H., and van Genuchten, M.Th., “Mathematical analysis of one-dimensional solute transport in a layered soil profile”, Soil Sci. Soc. Am. J., Vol. 35(7-8), pp. 944-953, 1991.
[24] Leij, F.J., and van Genuchten, M.Th., “Approximate analytical solutions for solute transport in two-layer porous media”, Transp. Porous Media, Vol. 18, pp. 65-85, 1995.
[25] Pérez Guerrero, J.S.P., Pimentel, L.C.G., Skaggs, T.H., and van Genuchten, M.Th., “Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique”, Int. J. Heat Mass Transf., Vol. 52, pp. 3297-3304, 2009.
[26] Liu, C.X., Ball, W.P., and Ellis, L.H., “An analytical solution to the one-dimensional solute advection-dispersion equation in multi-layer porous media”, Transp. Porous Media, Vol. 30(1), pp. 25-43, 1998.
[27] Chen, H., Ding, G., Han, W.S., Kim, K.Y., and Park, E., “Multispecies transport coupled to a first-order reaction network in a double-domain medium”, Water Resour Res., Vol. 48, doi: 10.1029/2011WR011351, 2012.
[28] Chen, J.S., Lai, K.H., Liu, C.W., and Ni, C.F., “A novel method for analytically solving multi-species advective-dispersive transport equations sequentially coupled with first-order decay reactions”, J. Hydrol. , Vol. 420-421, pp. 191-204 , 2012.
[29] Cotta, R.M., Integral Transforms in Computational Heat and Fluid Flow. CRC Press, Boca Raton, FL, 1993.