跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳鎮宇
Zhen-Yu Wu
論文名稱: 利用PLGA微球載體結合超聲波駐波場以提高巨噬細胞藥物輸送之效率
Enhancement of Drug Delivery to Macrophages Using PLGA Microspheres-Incorporated Ultrasound Standing Wave Field
指導教授: 李宇翔
Yu Hsiang Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生物醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 82
中文關鍵詞: 超聲波駐波場超聲波主聲幅力聚乳酸-巨甘醇酸微球載體有機溶劑揮發法藥物輸送細胞治療巨噬細胞
外文關鍵詞: Ultrasound standing wave field, Primary acousticradiation force, PLGA microsphere, Organic solvent evaporation method, Drug delivery, Cell therapy, Microphage
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 巨噬細胞(Macrophages)是一種位於組織內的白血球,屬於吞噬型細胞,主要能對病原體或外來物進行巨噬作用(Phagocytosis),將其消化,同時能引發其他免疫細胞,對病原體做出更強烈的免疫反應,所以在細胞治療相關的研究中,常以巨噬細胞為主要研究之標的,透過生物工法的改造,增加巨噬細胞對特定疾病/病原的專一性,以達到治療疾病的目的。然而,以藥物(蛋白質或核酸分子)輸送至巨噬細胞內來達到改造細胞目的的方式,常常會因為巨噬作用強大的分子吸收與代謝的能力,而使得被吸收的藥物分子在細胞體內輸送途中就被降解而無法完成細胞轉染(Transfection)。為了克服這一難題,我們利用超聲波駐波場搭配聚乳酸-聚甘醇酸(Poly(D,L-lactide-co-glycolide); PLGA)藥物微球載體探索一種新式的藥物傳遞至巨噬細胞之方法。本研究中,以Calcein-AM螢光化合物作為模擬的藥物,並以有機溶劑揮發法製備出包覆Calcein-AM的PLGA微球載體。我們以靜態光散射儀分析出微球成品平均粒徑為2.23m並且以動態光散射儀量測出微粒平均電位為-91.82.82mV。再者,我們比較有無PLGA包覆的Calcein-AM兩者於細胞體內降解的情形,結果顯示,攝取微球載體的DH82犬單核巨噬細胞可連續發出螢光長達72小時,而Calcein-AM化合物僅能給予細胞48小時螢光逐漸衰退,證明PLGA微球載體能保護被包覆的物質於細胞體內中並可將其緩慢釋放至少72小時。此外,為了瞭解微球載體與巨噬細胞在超聲波駐波場下之影響,我們以高解析度CCD連續觀察20分鐘,訂定出1 MHz、10 W之超聲波輸出能量、作用時間10分鐘為超聲波駐波場系統設定的最佳參數。最後,為了要驗證超聲波駐波場能否提升微球載體輸送至巨噬細胞體內的效率並且探討兩者間的比例關係,我們設計不同細胞微球數目比例(細胞:微球= 2:1、1:1、1:2),在經/未經超聲波駐波場處理後,以顯微鏡觀察並搭配流式細胞儀測量各組螢光數量和螢光強度以量化分析其藥物輸送之效率。實驗結果顯示以細胞與微球比2:1可獲得最高的藥物輸送效率,其系統在超聲波駐波場處理過後24小時螢光數量和螢光強度分別明顯提升了2(P< 0.05)和8倍(P< 0.05)。綜合整體數據分析結果,本研究成果證明了利用超聲波駐波場和PLGA微球載體所建構出的藥物輸送系統,可提高藥物分子傳遞至巨噬細胞內的效率。


    Inherent resistance of professional phagocytes for drug delivery has long been considered as one of the major barriers for development of immunocellular therapy. To overcome this challenge, a novel in vitro molecular delivery approach to macrophages using ultrasound standing wave field (USWF) associated with microspheres made by poly(lactic-co-glycolic acid) (PLGA) as drug carrier was explored.In this study, fluorescent compound of Calcein-AM was employed as the model drug and the Calcein-AM-loaded PLGA microspheres (CAPMs) were fabricated by organic solvent evaporation method. The mean size and surface charge of the CAPMs was 2.23 m and -91.8  2.82 mV detected using static and dynamic light scattering techniques, respectively. The CAPMs-internalized cells (canine macrophage DH82 cells) may continuously exhibit fluorescent expression for 72 h while most of cells treated with free Calcein-AM molecules lose fluorescence after 48 h, indicating that the encapsulated substance (e.g., Calcein-AM) can be protected from degradation by PLGA microcarriers and constantly released into cytoplasm for at least 72 h. After determining the optimal USWF parameters of 1-MHz frequency, 10-W acoustic output energy and 10-min exposure time, the efficiency of CAPMs internalization by DH82 cells (Cells # : CAPMs # = 2:1, 1:1, 1:2) with and/or without USWF treatment were examined. In this study, both number and fluorescence intensity of cells with and without USWF treatment were quantitatively analyzed by using flow cytometry. Our results showed that the optimal ratio of cell to CAPM was 2:1 in which the drug delivery efficiency of USWF-treated groupsignificantly enhanced about 2- (P< 0.05) and 8-fold (P< 0.05) in terms of fluorescence-expressed cell number and fluorescence intensity emitted, respectively as compared to the setting without USWF treatment. Overall the synthetic system of USWF in association with PLGA drug microcarriers developed in this study provided a feasible means for enhancement of molecular transfer efficiency of macrophages in vitro.

    摘要 I ABSTRACT III 目錄 V 圖目錄 VIII 表目錄 X 第一章緒論 1 第二章文獻回顧 5 2.1 藥物載體 5 2.1.1 生物高分子材料 5 2.1.2 PLGA之簡介 8 2.1.3藥物包覆方法簡介 11 2.2 超聲波簡介 13 2.2.1 超聲波 13 2.2.2 超聲波在醫學研究之應用 14 第三章實驗材料、儀器設備、研究方法 20 3.1 實驗材料 20 3.2儀器設備 21 3.3 細胞培養 22 3.4超聲波裝置 24 3.5研究方法 26 3.5.1製備包覆Calcein-AM之PLGA微球(CAPMs) 26 3.5.2 CAPMs型態測定 28 3.5.3 CAPMs粒徑分析 28 3.5.4 CAPMs濃度計算 29 3.5.5 CAPMs電位(Zeta Potential)測定 29 3.5.6 CAPMs和DH82細胞於超聲波駐波場下之影響 30 3.5.7分析USWF對於細胞的生存率之影響 32 3.5.8利用PLGA微球載體結合USWF進行巨噬細胞藥物輸送效率之測定 34 3.5.9 統計分析 36 第四章結果與討論 37 4.1 CAPMs型態 37 4.2 CAPMs粒徑分析 38 4.3 CAPMs電位測定 40 4.4 CAPMs對於DH82細胞之影響 41 4.5 CAPMs和DH82細胞於USWF下聚集的過程 44 4.6細胞經超聲波駐波場曝照後的存活率分析 48 4.7超聲波駐波場提高載體內分子傳遞至細胞內效率之分析 50 第五章結論與未來展望 57 第六章參考文獻 60

    1. Vanneman M, Dranoff G. “Combining immunotherapy and targeted therapies in cancer treatment”. Nature reviews cancer.2012; 12(4): 237-251.
    2. Couzin-Frankel J. “Cancer immunotherapy”. Science.2013; 342(6165): 1432-1433.
    3. http://www.j-immunother.com/english/immuno-Cell/kind.html.
    4. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. “Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA–PEG nanoparticles”. Proceedings of the National Academy of Sciences.2008; 105(45): 17356-17361.
    5. Shi J. “A New Strategy of Drug Delivery: Electric Field Distribution in Brain Tumor Due to Electroporation”. The Journal of Purdue Undergraduate Research.2014; 4(1): 9.
    6. Aihara H, Miyazaki J-i. “Gene transfer into muscle by electroporation in vivo”. Nature biotechnology.1998; 16(9): 867-870.
    7. Chen X. Cellular stress induced by microbubble-mediated sonoporation: The University of Hong Kong (Pokfulam, Hong Kong); 2013.
    8. Bao S, Thrall BD, Miller DL. “Transfection of a reporter plasmid into cultured cells by sonoporation in vitro”. Ultrasound in medicine & biology.1997; 23(6): 953-959.
    9. Lu Z-Z, Wu J, Sun T-M, Ji J, Yan L-F, Wang J. “Biodegradable polycation and plasmid DNA multilayer film for prolonged gene delivery to mouse osteoblasts”. Biomaterials.2008; 29(6): 733-741.
    10. RAO MG, BHARATHI P, AKILA R. “A COMPREHENSIVE REVIEW ON BIOPOLYMERS”.2014;4(2): 61-68.
    11. Madison LL, Huisman GW. “Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic”. Microbiology and molecular biology reviews.1999; 63(1): 21-53.
    12. 傅佑璋. “聚乳酸(PLA)及乳酸/羥基乙酸共聚合物(PLGA)於抗癌藥物傳輸系統之研究; The study of polylactide and Polylactide-co-glycolide in the anti-cancer drugs delivery stem”.2001.
    13. Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J. “Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody”. Journal of Controlled Release.2007; 120(1): 18-26.
    14. Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, et al. “Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery”. Biomaterials.2007; 28(5): 869-876.
    15. Novikova LN, Novikov LN, Kellerth J-O. “Biopolymers and biodegradable smart implants for tissue regeneration after spinal cord injury”. Current opinion in neurology.2003; 16(6): 711-715.
    16. Boyce ST, Greenhalgh DG, Kagan RJ, Housinger T, Sorrell JM, Childress CP, et al. “Skin anatomy and antigen expression after burn wound closure with composite grafts of cultured skin cells and biopolymers”. Plastic and reconstructive surgery.1993; 91(4): 632-641.
    17. Di Martino A, Sittinger M, Risbud MV. “Chitosan: a versatile biopolymer for orthopaedic tissue-engineering”. Biomaterials.2005; 26(30): 5983-5990.
    18. Siegel SJ, Kahn JB, Metzger K, Winey KI, Werner K, Dan N. “Effect of drug type on the degradation rate of PLGA matrices”. European Journal of Pharmaceutics and Biopharmaceutics.2006; 64(3): 287-293.
    19. Zolnik BS, Burgess DJ. “Effect of acidic pH on PLGA microsphere degradation and release”. Journal of Controlled Release.2007; 122(3): 338-344.
    20. Makadia HK, Siegel SJ. “Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier”. Polymers.2011; 3(3): 1377-1397.
    21. Anderson JM, Shive MS. “Biodegradation and biocompatibility of PLA and PLGA microspheres”. Advanced drug delivery reviews.2012; 64: 72-82.
    22. Houchin M, Topp E. “Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms”. Journal of pharmaceutical sciences.2008; 97(7): 2395-2404.
    23. Klose D, Siepmann F, Elkharraz K, Siepmann J. “PLGA-based drug delivery systems: importance of the type of drug and device geometry”. International journal of pharmaceutics.2008; 354(1): 95-103.
    24. Xin X, Hussain M, Mao JJ. “Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold”. Biomaterials.2007; 28(2): 316-325.
    25. Franco RA, Nguyen TH, Lee B-T. “Preparation and characterization of electrospun PCL/PLGA membranes and chitosan/gelatin hydrogels for skin bioengineering applications”. Journal of Materials Science: Materials in Medicine.2011; 22(10): 2207-2218.
    26. Willot G, Gomez F, Vast P, Andries V, Martines M, Messaddeq Y, et al. “Preparation of zinc sodium polyphosphates glasses from coacervates precursors. Characterisation of the obtained glasses, and their applications”. Comptes Rendus Chimie.2002; 5(12): 899-906.
    27. Luzzi LA, Gerraughty RJ. “Effects of selected variables on the extractability of oils from coacervate capsules”. Journal of pharmaceutical sciences.1964; 53(4): 429-431.
    28. http://www.sigmaaldrich.com/technical-documents/articles/material-
    matters/polyester-based-nanoparticle-formation.html.
    29. Alex R, Bodmeier R. “Encapsulation of water-soluble drugs by a modified solvent evaporation method. I. Effect of process and formulation variables on drug entrapment”. Journal of Microencapsulation.1990; 7(3): 347-355.
    30. O'Donnell PB, McGinity JW. “Preparation of microspheres by the solvent evaporation technique”. Advanced drug delivery reviews.1997; 28(1): 25-42.
    31. Uchida T, Yoshida K, Goto S. “Preparation and characterization of polylactic acid microspheres containing water-soluble dyes using a novel w/o/w emulsion solvent evaporation method”. Journal of microencapsulation.1996; 13(2): 219-228.
    32. Liu R, Ma G-H, Wan Y-H, Su Z-G. “Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsification technique and double emulsion-solvent evaporation method”. Colloids and Surfaces B: Biointerfaces.2005; 45(3): 144-153.
    33. Saxena V, Sadoqi M, Shao J. “Indocyanine green-loaded biodegradable nanoparticles: preparation, physicochemical characterization and in vitro release”. International journal of pharmaceutics.2004; 278(2): 293-301.
    34. Tewes F, Munnier E, Antoon B, Ngaboni Okassa L, Cohen-Jonathan S, Marchais H, et al. “Comparative study of doxorubicin-loaded poly (lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods”. European journal of pharmaceutics and biopharmaceutics.2007; 66(3): 488-492.
    35. Niwa T, Takeuchi H, Hino T, Nohara M, Kawashima Y. “Biodegradable submicron carriers for peptide drugs: preparation of DL-lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate by a novel emulsion-phase separation method in an oil system”. International journal of pharmaceutics.1995; 121(1): 45-54.
    36. Dillen K, Vandervoort J, Van den Mooter G, Ludwig A. “Evaluation of ciprofloxacin-loaded Eudragit< sup>®</sup> RS100 or RL100/PLGA nanoparticles”. International journal of pharmaceutics.2006; 314(1): 72-82.
    37. Budhian A, Siegel SJ, Winey KI. “Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content”. International journal of pharmaceutics.2007; 336(2): 367-375.
    38. Galindo-Rodriguez S, Allemann E, Fessi H, Doelker E. “Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods”. Pharmaceutical research.2004; 21(8): 1428-1439.
    39. Shung KK. “Diagnostic ultrasound: past, present, and future”. Journal of Medical and Biological Engineering.2011; 31(6): 371-374.
    40. Zhao L, Kampmann M, Prior SJ, Sorkin MJ, Braganza M, McEvoy S, et al. “Freehand 3D Ultrasound to Measure Thrombus Volume in Patients with Acute Deep-Vein Thrombosis”. Journal for Vascular Ultrasound.2014; 38(1): 23-28.
    41. Barry C, Allott C, John N, Mellor P, Arundel P, Thomson D, et al. “Three-dimensional freehand ultrasound: image reconstruction and volume analysis”. Ultrasound in medicine & biology.1997; 23(8): 1209-1224.
    42. Liang H, Tang J, Halliwell M. “Sonoporation, drug delivery, and gene therapy”. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine.2010; 224(2): 343-361.
    43. Suslick KS. “The chemical effects of ultrasound”. Scientific American.1989; 260(2): 80-86.
    44. Tomita Y, Matsuura T, Kodama T. “Temporal effect of inertial cavitation with and without microbubbles on surface deformation of agarose S gel in the presence of 1-MHz focused ultrasound”. Ultrasonics.2014.
    45. Saliba Y, Mougenot N, Jacquet A, Atassi F, Hatem S, Farès N, et al. “A new method of ultrasonic nonviral gene delivery to the adult myocardium”. Journal of molecular and cellular cardiology.2012; 53(6): 801-808.
    46. Yasuda K, Umemura S-i, Takeda K. “Concentration and fractionation of small particles in liquid by ultrasound”. Japanese journal of applied physics.1995; 34(5S): 2715.
    47. Yasuda K, Umemura Si, Takeda K. “Particle separation using acoustic radiation force and elecrostatic force”. The Journal of the Acoustical Society of America.1996; 99(4): 1965-1970.
    48. Dayton P, Klibanov A, Brandenburger G, Ferrara K. “Acoustic radiation force< i> in vivo</i>: a mechanism to assist targeting of microbubbles”. Ultrasound in medicine & biology.1999; 25(8): 1195-1201.
    49. Kobayashi D, Hayashida Y, Sano K, Terasaka K. “Agglomeration and rapid ascent of microbubbles by ultrasonic irradiation”. Ultrasonics sonochemistry.2011; 18(5): 1193-1196.
    50. Spengler J, Coakley W, Christensen K. “Microstreaming effects on particle concentration in an ultrasonic standing wave”. AIChE journal.2003; 49(11): 2773-2782.
    51. Petersson F, Nilsson A, Holm C, Jönsson H, Laurell T. “Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces”. Lab on a Chip.2005; 5(1): 20-22.
    52. Bazou D, Kearney R, Mansergh F, Bourdon C, Farrar J, Wride M. “Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap”. Ultrasound in medicine & biology.2011; 37(2): 321-330.
    53. Lee Y-H, Peng C-A. “Nonviral transfection of suspension cells in ultrasound standing wave fields”. Ultrasound in medicine & biology.2007; 33(5): 734-742.
    54. Mao S, Xu J, Cai C, Germershaus O, Schaper A, Kissel T. “Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres”. International journal of pharmaceutics.2007; 334(1): 137-148.
    55. Allison SD. “Analysis of initial burst in PLGA microparticles”.2008.
    56. Cleland JL. “Solvent evaporation processes for the production of controlled release biodegradable microsphere formulations for therapeutics and vaccines”. Biotechnology progress.1998; 14(1): 102-107.
    57. Wang J, Wang BM, Schwendeman SP. “Characterization of the initial burst release of a model peptide from poly (D, L-lactide-co-glycolide) microspheres”. Journal of controlled release.2002; 82(2): 289-307.
    58. Batycky RP, Hanes J, Langer R, Edwards DA. “A theoretical model of erosion and macromolecular drug release from biodegrading microspheres”. Journal of pharmaceutical sciences.1997; 86(12): 1464-1477.
    59. http://oncosec.com/tag/electroporation/.
    60. Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL. “The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH”. Molecular Therapy.2012; 21(1): 149-157.
    61. http://www.mdpi.com/2073-4360/2076/2076/1727/htm.

    QR CODE
    :::