跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳逸明
Yi-Ming Chen
論文名稱: 利用亂相編碼與體積全像之全光學式光纖感測系統
指導教授: 孫慶成
Ching-cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 88
語文別: 中文
論文頁數: 100
中文關鍵詞: 全像光纖多工儲存
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是提出並且證實全光學式光纖感測系統的可行性。在理論上,此光纖感測器是結合了多模光纖( Multimode Fiber ) 之光斑 ( Speckle ) 對於物理量改變的靈敏性與亂相編碼 ( Random Phase Encoding ) 之體積全像( Volume Hologram ) 多工儲存的技術。在實驗上,我們主要討論光纖受橫向位移量的影響下,系統與光纖光斑、光纖纏繞數目及毛玻璃之間的關係。實驗結果發現若增加光斑資訊可提昇系統的訊雜比 ( SNR ),若增加光纖纏繞數目的可提高系統的靈敏度,若加入毛玻璃有助於提昇系統的訊雜比。最後,我們利用實驗所得的結果將系統最佳化並且真正的實現了 “ 全光學式光纖感測系統 ”。


    第一章 緒論 1-1 光折變全像光學之發展 1 1-2 光纖感測器之發展 2 1-3 全光學式光纖感測系統 3 1-4 論文大綱 4 第二章 光折變晶體與光折變效應 2-1 光折變效應 5 2-2 鈮酸鋰晶體之光折變響應 10 2-3 體積全像 14 2-4 多工儲存 17 第三章 光纖基本理論 3-1 光纖模態 23 3-2 光纖光斑的形成 29 3-3 光纖光斑的模擬與分析 31 第四章 光纖光斑與相位編碼 4-1 光纖光斑之敏感度 35 4-2 光纖光斑之相位正交性 36 4-3 光斑與雜訊比之關係 38 第五章 全光學式光纖感測系統 5-1 設計原理 40 5-2 系統架構 42 5-3 位移量測敏感度之模擬 44 第六章 實驗結果與討論 6-1 實驗目的 47 6-2 訊雜比 50 6-3 光纖靈敏度 62 6-4 加毛玻璃的影響 64 6-5 最佳化設計 72 第七章 全光學式光纖感測系統之驗證 7-1 系統驗證 73 7-2 展望 82 第八章 結論 83 參考資料 附錄(一) 附錄(二) 中英文對照表

    [1] D. Gabor, “A new Microscopic principle,” Nature 161, 777 (1948).
    [2] R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic Press, New York, 1971).
    [3] P. Günter and J.-P. Huignard eds., Photorefractive Materials and Their ApplicationⅠ,Ⅱ (Spring-Verlag, New York, 1989).
    [4] Asthana and B. Finkelstein,“Superdense optical storage system,” IEEE Spectrum, p. 25-31(1995).
    [5] F. H. Mok, M. C. Tackitt, and H. M. Stoll, “Storage of 500 High-resolution holograms in LiNbO3 Crystal,” Opt. Lett. 16, 605 (1991).
    [6] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume hologram,” Opt. Lett. 17, 1471 (1992).
    [7] H. Y. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764 (1994).
    [8] C. Denz, G. Pauliat, G. Rooson, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171 (1991).
    [9] C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, and M. W. Chang, “Random phase-coded multiplexing of hologram volumes using ground glass,” Optical Quantum Electronics 28, 1551 (1996).
    [10] B. Culshaw and J. Dakin, Optical Fiber Sensor: Systems and Applications (Artech. Boston, Mass., 1989).
    [11] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Bullman, J. J. Lecinstein, and K. Nassau, “Optical-induced refractive index inhomogeneity in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72 (1966).
    [12] F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389 (1969).
    [13] L. Young, W. K. Y. Wong, M. L. Thewait, and W. D. Crnish, “Theory of formation of phase holograms in lithium niobate,” Appl. Phys. Lett. 24, 264 (1974).
    [14] G. A. Alphonse, R. C. Alig, O. L. Staebler, and W. Philips, “Time- dependent characteristics of photo-induced space charge field and phase holograms in lithium niobate and other photorefractive materials,” RCA Review 36, 213 (1975).
    [15] D. VonderLinde and A. M. Glass, “Photorefractive effects for reversable holographic storage of information,” J. Appl. Phys. 8, 85 (1975).
    [16] D. M. Kim, R. R. Shah, T. A. Rabsonand, and F. K. Tittel, “Nonlinear dynamic theory for photorefractive phase hologram formation,” Appl. Phys. Lett. 28, 338 (1976).
    [17] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state, ” Ferroelectrics 22, 949, (1979).
    [18] J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, “Pho-torefractive effects and light-induced charge migration in barium ti-tanate,” J. Appl. Phys. 51, 1297 (1980).
    [19] A. Yariv and Pochi Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
    [20] Pochi Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
    [21] W. R. Klein, “Theoretical efficiency of Bragg devices,” Proc. IEEE 54, 803 (1996).
    [22] J. T. LaMacchia and D. L. White, “Code multiplex exposure holograms,” Appl. Opt. 7, 91 (1986).
    [23] T. Okoshi, Optical Fibers (Academic Press, New York, 1982).
    [24] F. T. S. Yu, K. Pan, C.-M. Uang, and P. B. Ruffin, “Fiber specklegram sensing by means of an adaptive joint transform correlator,” Opt. Eng. 32, 2884 (1993).
    [25] F. T. S. Yu, M. Wen, S. Yin, and C.-M. Uang, “Submicometer displacement sensing using inner-product multimode fiber speckle fields,” Appl. Opt. 32, 4685 (1993).
    [26] S. Yin, P. Purwosumarto, and F. T. S. Yu, “Application of fiber specklergram sensor to fine angular alignment,” Opt. Commun. 170, 15 (1999).

    QR CODE
    :::