跳到主要內容

簡易檢索 / 詳目顯示

研究生: 洪筠荃
Yun -Quan Hong
論文名稱: 四面體外心模組開發與其在三維半導體元件模擬
Development of tetrahedron circumcenter element and its applications to 3-D semiconductor device simulation
指導教授: 蔡曜聰
Yao-Tsung Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 53
中文關鍵詞: 四面體三維半導體外心模組元件模擬
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,為了使模擬程式能夠更精確於實際製程,我們開發出以外心法四面體等效電路模型,來滿足邊緣效應所造成的誤差。為了實現網格準確度,我們分別對每個節點通入電壓來測試電流密度、特殊電阻及PN二極體進行驗證,與估算值及理論值做比較,驗證無誤後,希望可以開發由四面體模組拼湊成六面體結構,但不幸於直角四面體處外心外露,造成包覆體積重疊引起之誤差,因此在六面體結構為可惜之處,此外我們開發出環狀及球狀結構,希望可以增進建立點數最少三維立體網格。


    In this thesis, in order to obtain an accurate simulation in the production process, we developed the 3-D tetrahedron circumcenter element to correct the error caused by the edge effect. So as to achieve the accuracy of mesh, we tested and verified the result by using the current density, special resistors and p-n diode. We also compared the estimated value with theoretical value to obtain the correct result from verification. We hope that we can develop the tetrahedral after this experiment. Unfortunately, the exposed right angle tetrahedron of circumcenter caused the error of the volume overlap. The hexahedral structure is a pity. Additionally, we developed a circular and spherical structure to obtain a 3-D mesh with a minimum grid points.

    摘要 I Abstract II 目錄 III 圖目錄 IV 表目錄 VI 第一章 簡介 1 第二章 三維網格等效模型分析 3 2.1 二維銳角網格等效模型分析 3 2.2三維四面體網格結構定義 6 2.3 三維連續方程式等效模型建立 16 第三章 三維網格四面體網格等效模型驗證 19 3-1 電子流電洞流密度驗證 19 3-2 電阻模擬與驗證 25 3-3 多顆四面體串接成PN之討論 29 第四章 四面體網格問題探討與應用 31 4-1直角四面體分析 32 4-2四面體微調之環狀應用與分析 36 4-3 球狀分析與問題探討 39 第五章 結論 40 參考文獻 41

    [1] H. Lv; Y. Wang “Partition Triangle Meshes into Coarsely Quadrangular Segmentation,” Fuzzy Systems and Knowledge Discovery, 2008 FSKD ’08. Fifth International Conference , vol. 4,pp. 590-594, 2008.
    [2] L. P. Chew. “Guaranteed-quality mesh generation for curved surfaces,” In
    SCG ’93: Proceedings of the ninth annual symposium on Computational geometry, pp. 274–280, 1993.
    [3] R. A. Jabr, M. Hamad, Y . M. Mohanna,“Newton-Raphson solution of Possion’s equation in a pn diode,” Int. J. Electrical Eng. Educ, Jan. 2007 .
    [4] M. J. Zeng, “Development of Triangular element and its applications to arbitrary 2D Semiconductor device,” M.S. Thesis, Institute of EE, National Central University, Taiwan, Republic of China,2014.
    [5] D. A. Neamen, Semiconductor physics and devices,3^rded.,McGraw-Hill Companies Inc.,New York,2003.
    [6] R. E. Bank, D. J. Rose, W. Fichtner, “Numerical methods for semiconductor device,” IEEE Trans, Electron Devices, vol. 30,no.9,Sep. 1983.
    [7] J. A. Greenfield , R. W. Dutton, “Nonplanar VLSI Device Analysis Using the Solution of Poisson's Equation,” IEEE Journal of Solid-State C, vol. 15, pp. 585 – 597, 1980.
    [8] D. L. Scharfetter, H. K Gummel, “Large-Signal Analysis of a Silicon Read Diode Oscillator,” IEEE Trans. Electron Device, vol. 16, Jan. 1969.
    [9] D. K. Cheng, “Field and wave electromagnetics, ” 2nd ed. Addison-Wesley Publishing Company, Inc. 1989.
    [10] W. T. Shen, “Finding internal vector from the edge vector in obtuse triangle element for 2D Semiconductor Device Simulation,” M. S. Thesis, Institute of EE, National Central University, Taiwan, Republic of China, 2016.
    [11] S. Jarvenpaa, M. Taskinen, P. Yla-Oijala, “ Singularity subtraction technique for high-order polynomial vector basis functions on planar triangles,” IEEE Transactions on Antennas and Propagation, vol. 56, pp. 42-49, 2006.
    [12] M. Putti ,C. Cordes, “Finite Element Approximation Of The Diffusion Operator On tetrahedral ,” Society for Industrial and Applied Mathematics Vol. 19, No. 4, pp. 1154–1168, 1998.
    [13] L. Liu, Z. Li, Y. You, J. Xu, “Two-dimensional analytic model for fully depleted surrounding gate metal-oxide-semiconductor field-effect transistor,” Hsi An Chiao Tung Ta Hsueh, pp. 73-77, 2011.
    [14] S. M. Sze, K. K. Ng, “Physics of Semiconductor Devices ,” 3rd ed. John Wiley & Sons, Inc. New Jersey, 2007.
    [15] J. R. Shewchuk, “Tetrahedral Mesh Generation by Delaunay Refinement ,” School of Computer Science Carnegie Mellon University Pittsburgh, Pennsylvania, 2015.
    [16] Y. T. Zhang, C. W. Shu, “Third Order WENO Scheme on Three Dimensional Tetrahedral Meshes ,” Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-4618, USA, 2008.
    [17] J. K. Hsu, “Finding the internal vector from the plane equation in obtuse triangle element for 2D Semiconductor Device Simulation,” M. S. Thesis, Institute of EE, National Central University, Taiwan, Republic of China, 2016.

    QR CODE
    :::