| 研究生: |
李育修 Yu-Hsiu Li |
|---|---|
| 論文名稱: |
金奈米粒子包覆於UiO-66之有機相與水相合成的探討及中-微孔孔洞分級材料的研究與應用 |
| 指導教授: |
謝發坤
Fa-Kuen Shieh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 金奈米粒子 、金屬有機骨架材料 、UiO-66 、醇水分離 |
| 外文關鍵詞: | Gold nano particle, Metal-organic Frameworks, UiO-66, Ethanol/Water Separation |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文分成兩部分:
第一部分為合成金屬奈米粒子於高熱穩定性的金屬有機骨架材料UiO-66中,在有機相下找到金奈米粒子能夠不被溶化掉的條件也能夠被包覆於UiO-66當中,其中找到最佳的條件為在DMF中利用ZrOCl2做為鋯源去反應,但在此狀況合成下的產物並非單晶結構包覆金屬奈米粒子。隨後,為了使綠色化學實踐,以及在DMF下所無法解決的課題-控制MOF的晶體成長與金屬面向呈一規則排序,同樣選擇金奈米粒子,並嘗試在水相下也做Metal@MOF,經過一系列實驗後,發現利用CTAB以及CTAC狀態下的金屬奈米粒子易被包覆,雖然只有少許的例子是一顆金奈米粒子包於一顆UiO-66,然而這是一個重要的里程,未來需要更多的實驗探討去找到最佳化的金屬奈米粒子包覆效果以及金屬面向跟MOF晶體成長的控制,達到探究機理與催化方向的先驅。
第二部分利用UiO-66結晶,將其鍵結在官能基化的中孔矽材CAR-10上面,合出孔洞分級材料,利用FT-IR、XRD以及SEM確認材料是否成功合成,再以等溫氮氣吸脫附儀及熱重分析儀研究材料的孔洞大小和性質,並將材料送測醇水分離的效率,並顯示有不錯的分離結果,未來希望可以將此類的孔洞分級材料應用在其他領域上。
This thesis is sorted by two parts as below:
Part I: Single encapsulation of gold nanoparticle into robust Zr-based metal-organic framework:Evolution of the alignments toward a single Au nanoparticle embedded into an individual UiO-66 nanocrystal: The realization of metal NPs for specific catalytic application is an intensively studied field where numerous efforts are investigated in modulating their active site via the incorporation of the other materials. Additionally, as small sized NPs possess high surface energy, agglomeration during catalytic reaction is presented. Therefore, materials incorporated with metal NPs should either prevent the agglomeration or provide the specific mechanism to tune their catalytic nature. In this study, Zr-based metal-organic frameworks, UiO-66, with microposity and milder synthetic condition is here investigated as the incorporating compositions while the gold NPs is selected as the prototype. By controlling the crystallization of UiO-66 nanocrystal under organic solution, a single particle of UiO-66 nanocrystal is able to encapsulate only one gold NP inside, Au@UiO-66. Notably, the metal precursor of UiO-66 in this study is selected as ZrOCl2 rather than ZrCl4 which often lead to the erosion of gold NPs. Furthermore, to tune the alignments of the Au@UiO-66, the organic solution in previous experiment is switch to the water-based system which is able provide the polarity to modulate the surfactant CTAB and CTAC for the further advanced alignments of Au@UiO-66. Consequently, the resulting chemically robust Au@UiO-66 materials is expected to provide more scopes to tune the catalytic capability of metal NPs as well as be the prototype to establish other Metal NPs@MOFs.
Part ll: Synthesis of Hierarchical Micro/Mesoporous Structure: Zr-based Metal-Organic Framework on SBA-15 for Enhanced Pervaporation of Water/Ethanol Mixtures: A new type of hierarchical micro/mesoporous structure (UiO-66@CAR-10) was achieved by heteroepitaxial growth of Zr-metal organic framework, UiO-66, on the functionalized silica mesoporous material, CAR-10. The synthesized hierarchical micro/mesoporous UiO-66@CAR-10 structure was examined by various spectroscopic techniques. In addition, the pervaporation measurements of the liquid water/ethanol mixture show that UiO-66@CAR-10/PVA (poly(vinylalcohol) mixed-matrix membrane exhibits enhanced performance both on the permeability and separation factor. Compared to the previous reports, this study provides a simple approach for synthesizing novel hierarchical porous composites exhibiting both advantages of mesoporous materials and microporous materials, which is expected to be useful for gas adsorption, separation, and catalysis.
(1) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Chemical Reviews 2012, 112, 673.
(2) Liu, X.; Demir, N. K.; Wu, Z.; Li, K. Journal of the American Chemical Society 2015, 137, 6999.
(3) Shekhah, O.; Liu, J.; Fischer, R. A.; Woll, C. Chemical Society Reviews 2011, 40, 1081.
(4) Huxford, R. C.; Della Rocca, J.; Lin, W. Current Opinion in Chemical Biology 2010, 14, 262.
(5) Li, S.-L.; Xu, Q. Energy & Environmental Science 2013, 6, 1656.
(6) Stock, N.; Biswas, S. Chemical Reviews 2012, 112, 933.
(7) Hu, P.; Morabito, J. V.; Tsung, C.-K. ACS Catalysis 2014, 4, 4409.
(8) Zhang, W.; Lu, G.; Cui, C.; Liu, Y.; Li, S.; Yan, W.; Xing, C.; Chi, Y. R.; Yang, Y.; Huo, F. Advanced Materials 2014, 26, 4056.
(9) Feng, D.; Gu, Z.-Y.; Chen, Y.-P.; Park, J.; Wei, Z.; Sun, Y.; Bosch, M.; Yuan, S.; Zhou, H.-C. Journal of the American Chemical Society 2014, 136, 17714.
(10) Devic, T.; Serre, C. Chemical Society Reviews 2014, 43, 6097.
(11) Wißmann, G.; Schaate, A.; Lilienthal, S.; Bremer, I.; Schneider, A. M.; Behrens, P. Microporous and Mesoporous Materials 2012, 152, 64.
(12) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. Journal of the American Chemical Society 2008, 130, 13850.
(13) Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Chemistry of Materials 2010, 22, 6632.
(14) Shearer, G. C.; Chavan, S.; Ethiraj, J.; Vitillo, J. G.; Svelle, S.; Olsbye, U.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. Chemistry of Materials 2014, 26, 4068.
(15) Gutov, O. V.; Bury, W.; Gomez-Gualdron, D. A.; Krungleviciute, V.; Fairen-Jimenez, D.; Mondloch, J. E.; Sarjeant, A. A.; Al-Juaid, S. S.; Snurr, R. Q.; Hupp, J. T.; Yildirim, T.; Farha, O. K. Chemistry – A European Journal 2014, 20, 12389.
(16) Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C. Angewandte Chemie International Edition 2012, 51, 10307.
(17)Hu, Z.; Peng, Y.; Kang, Z.; Qian, Y.; Zhao, D. Inorganic Chemistry 2015, 54, 4862.
(18) Ragon, F.; Campo, B.; Yang, Q.; Martineau, C.; Wiersum, A. D.; Lago, A.; Guillerm, V.; Hemsley, C.; Eubank, J. F.; Vishnuvarthan, M.; Taulelle, F.; Horcajada, P.; Vimont, A.; Llewellyn, P. L.; Daturi, M.; Devautour-Vinot, S.; Maurin, G.; Serre, C.; Devic, T.; Clet, G. Journal of Materials Chemistry A 2015, 3, 3294.
(19) Reinsch, H.; Bueken, B.; Vermoortele, F.; Stassen, I.; Lieb, A.; Lillerud, K.-P.; De Vos, D. CrystEngComm 2015, 17, 4070.
(20) Katz, M. J.; Brown, Z. J.; Colon, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. Chemical Communications 2013, 49, 9449.
(21) Liang, W.; Coghlan, C. J.; Ragon, F.; Rubio-Martinez, M.; D'Alessandro, D. M.; Babarao, R. Dalton Transactions 2016, 45, 4496.
(22) Hu, Z.; Castano, I.; Wang, S.; Wang, Y.; Peng, Y.; Qian, Y.; Chi, C.; Wang, X.; Zhao, D. Crystal Growth & Design 2016, 16, 2295.
(23) Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Chemistry – A European Journal 2011, 17, 6643.
(24) Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Chemistry of Materials 2011, 23, 1700.
(25) Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W. Journal of the American Chemical Society 2013, 135, 10525.
(26) Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P. Chemistry of Materials 2016, 28, 3749.
(27) Ozin, G. A. Advanced Materials 1992, 4, 612.
(28) Henglein, A. Chemical Reviews 1989, 89, 1861.
(29) Gleiter, H. Progress in Materials Science 1989, 33, 223.
(30) Fendler, J. H. Chemical Reviews 1987, 87, 877.
(31) Takeuchi, Y.; Ida, T.; Kimura, K. The Journal of Physical Chemistry B 1997, 101, 1322.
(32) Keisaku, K. Bulletin of the Chemical Society of Japan 1984, 57, 1683.
(33) Yatsuya, S.; Kasukabe, S.; Uyeda, R. Journal of Crystal Growth 1974, 24, 319.
(34) Naoki, S.; Keisaku, K. Bulletin of the Chemical Society of Japan 1989, 62, 1758.
(35) Keisaku, K. Bulletin of the Chemical Society of Japan 1987, 60, 3093.
(36) Keisaku, K.; Shunji, B. Bulletin of the Chemical Society of Japan 1983, 56, 3578.
(37) Hu, J.; Odom, T. W.; Lieber, C. M. Accounts of Chemical Research 1999, 32, 435.
(38) Rak, M. J.; Friscic, T.; Moores, A. Faraday Discussions 2014, 170, 155.
(39) Lin, H.; Qin, L. Z.; Hong, H.; Li, Q. Journal of Nano Research 2016, 40, 174.
(40) Fojtik, A.; Henglein, A. Berichte der Bunsen-Gesellschaft 1993, 97, 252.
(41) Neddersen, J.; Chumanov, G.; Cotton, T. M. Appl. Spectrosc. 1993, 47, 1959.
(42) Jeon, J.-S.; Yeh, C.-S. Journal of the Chinese Chemical Society 1998, 45, 721.
(43) Wu, K. T.; Yao, Y. D.; Wang, C. R. C.; Chen, P. F.; Yeh, E. T. Journal of Applied Physics 1999, 85, 5959.
(44) Yeh, M.-S.; Yang, Y.-S.; Lee, Y.-P.; Lee, H.-F.; Yeh, Y.-H.; Yeh, C.-S. The Journal of Physical Chemistry B 1999, 103, 6851.
(45) Mafuné, F.; Kohno, J.-y.; Takeda, Y.; Kondow, T.; Sawabe, H. The Journal of Physical Chemistry B 2000, 104, 9111.
(46) Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Analytical Chemistry 1995, 67, 735.
(47) Esumi, K.; Wakabayashi, M.; Torigoe, K. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996, 109, 55.
(48) Henglein, A.; Meisel, D. Langmuir 1998, 14, 7392.
(49) Yonezawa, Y.; Sato, T.; Ohno, M.; Hada, H. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1987, 83, 1559.
(50) Arul Dhas, N.; Cohen, H.; Gedanken, A. The Journal of Physical Chemistry B 1997, 101, 6834.
(51) Nagata, Y.; Watananabe, Y.; Fujita, S.-i.; Dohmaru, T.; Taniguchi, S. Journal of the Chemical Society, Chemical Communications 1992, 1620.
(52) Lisiecki, I.; Pileni, M. P. Journal of the American Chemical Society 1993, 115, 3887.
(53) Chang, C.-L.; Fogler, H. S. Langmuir 1997, 13, 3295.
(54) Chen, D.-H.; Wu, S.-H. Chemistry of Materials 2000, 12, 1354.
(55) Reetz, M. T.; Helbig, W. Journal of the American Chemical Society 1994, 116, 7401.
(56) Yu; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C. The Journal of Physical Chemistry B 1997, 101, 6661.
(57) Gu, Z.; Chen, L.; Duan, B.; Luo, Q.; Liu, J.; Duan, C. Chemical Communications 2016, 52, 116.
(58) Liu, H.; Yang, Q. CrystEngComm 2011, 13, 5488.
(59) Hu, P.; Zhuang, J.; Chou, L.-Y.; Lee, H. K.; Ling, X. Y.; Chuang, Y.-C.; Tsung, C.-K. Journal of the American Chemical Society 2014, 136, 10561.
(60) Tulig, K.; Walton, K. S. RSC Advances 2014, 4, 51080.
(61) Wang, S.; Morris, W.; Liu, Y.; McGuirk, C. M.; Zhou, Y.; Hupp, J. T.; Farha, O. K.; Mirkin, C. A. Angewandte Chemie International Edition 2015, 54, 14738.
(62) Abdulkin, P.; Precht, T. L.; Knappett, B. R.; Skelton, H. E.; Jefferson, D. A.; Wheatley, A. E. H. Particle & Particle Systems Characterization 2014, 31, 571.
(63) Das, A.; Chadha, R.; Maiti, N.; Kapoor, S. Journal of Nanoparticles 2014, 2014, 7.
(64) Sakai, T.; Enomoto, H.; Torigoe, K.; Sakai, H.; Abe, M. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009, 347, 18.
(65) Grutzner, A. The Journal of Physical Chemistry 1932, 37, 149.
(66) Everett, D. H. In Pure and Applied Chemistry 1972; Vol. 31, p 577.
(67) Vinu, A.; Miyahara, M.; Hossain, K. Z.; Takahashi, M.; Balasubramanian, V. V.; Mori, T.; Ariga, A. Journal of Nanoscience and Nanotechnology 2007, 7, 828.
(68) Hudson, S. P.; Padera, R. F.; Langer, R.; Kohane, D. S. Biomaterials 2008, 29, 4045.
(69) H. Clark, J.; J. Macquarrie, D. Chemical Communications 1998, 853.
(70) Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C.-W.; Lin, V. S. Y. Advanced Drug Delivery Reviews 2008, 60, 1278.
(71) Giraldo, L.; Moreno-Piraján, J. C. Materials Research 2013, 16, 745.
(72) Tanev, P. T.; Pinnavaia, T. J. Science 1995, 267, 865.
(73) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Nature 1994, 368, 317.
(74) Liu, J.; Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim, A. Y.; Gong, M. Advanced Materials 1998, 10, 161.
(75) Stein, A.; Melde, B. J.; Schroden, R. C. Advanced Materials 2000, 12, 1403.
(76) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1976, 72, 1525.
(77) Yan, Z.; Tao, S.; Yin, J.; Li, G. Journal of Materials Chemistry 2006, 16, 2347.
(78) Han, L.; Sakamoto, Y.; Terasaki, O.; Li, Y.; Che, S. Journal of Materials Chemistry 2007, 17, 1216.
(79) Tadros, P. D. T. F. Applied surfactants: principles and applications, 2005.
(80) ALOthman, Z. Materials 2012, 5, 2874.
(81) Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Angewandte Chemie International Edition 2006, 45, 3216.
(82) Vartuli, J. C.; Schmitt, K. D.; Kresge, C. T.; Roth, W. J.; Leonowicz, M. E.; McCullen, S. B.; Hellring, S. D.; Beck, J. S.; Schlenker, J. L. Chemistry of Materials 1994, 6, 2317.
(83) Hartmann, M.; Kostrov, X. Chemical Society Reviews 2013, 42, 6277.
(84) Lopez-Orozco, S.; Inayat, A.; Schwab, A.; Selvam, T.; Schwieger, W. Advanced Materials 2011, 23, 2602.
(85) Lee, Y. J.; Lee, J. S.; Park, Y. S.; Yoon, K. B. Advanced Materials 2001, 13, 1259.
(86) Rhodes, K. H.; Davis, S. A.; Caruso, F.; Zhang, B.; Mann, S. Chemistry of Materials 2000, 12, 2832.
(87) Parlett, C. M. A.; Wilson, K.; Lee, A. F. Chemical Society Reviews 2013, 42, 3876.
(88) Balilehvand, S.; Hashemianzadeh, S. M.; Razavi, S.; Karimi, H. Adsorption 2012, 18, 13.
(89) Wei, J.-S.; Ding, H.; Wang, Y.-G.; Xiong, H.-M. ACS Applied Materials & Interfaces 2015, 7, 5811.
(90) Ren, P. REN21 Secretariat: Paris, France 2015.
(91) Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. Journal of the American Chemical Society 1940, 62, 1723.
(92) Barrett, E. P.; Joyner, L. G.; Halenda, P. P. Journal of the American Chemical Society 1951, 73, 373.
(93) Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Chemistry of Materials 2000, 12, 1961.
(94) Tsai, C.-T.; Pan, Y.-C.; Ting, C.-C.; Vetrivel, S.; Chiang, A. S. T.; Fey, G. T. K.; Kao, H.-M. Chemical Communications 2009, 5018.
(95) Yang, C.-M.; Zibrowius, B.; Schmidt, W.; Schüth, F. Chemistry of Materials 2004, 16, 2918.
(96) Sue, Y.-C.; Wu, J.-W.; Chung, S.-E.; Kang, C.-H.; Tung, K.-L.; Wu, K. C. W.; Shieh, F.-K. ACS Applied Materials & Interfaces 2014, 6, 5192.
(97) Tao, J.; Xiong, J.; Jiao, C.; Zhang, D.; Lin, H.; Chen, Y. ACS Sustainable Chemistry & Engineering 2016, 4, 60.
(98) Han, Y.; Liu, M.; Li, K.; Zuo, Y.; Wei, Y.; Xu, S.; Zhang, G.; Song, C.; Zhang, Z.; Guo, X. CrystEngComm 2015, 17, 6434.