跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳朝信
Chao-Hsin Chen
論文名稱: 空中雨滴粒徑分布之反演法及參數特性分析
指導教授: 朱延祥
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 太空科學與工程學系
Department of Space Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 147
中文關鍵詞: 雨滴粒徑分布特高頻雷達大氣垂直上升速度
外文關鍵詞: DSD, VHF radar, Upward wind velocity
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用中壢特高頻同向散射雷達觀測的降水回波資訊,結合理論推導和長期地面雨滴譜儀資料,研究大氣垂直速度對於反演出的伽瑪雨滴粒徑分布中之斜率參數Λ和形狀參數μ之間的影響。在理論推導的過程中經由漸進式的導入和誤差修正,將可直接由雷達觀測的降水終端速度和都卜勒頻譜寬得到μ和Λ值,結果顯示隨者大氣垂直上升速度的增加,反演出的μ和Λ值也有跟著變大的趨勢。此外大氣垂直速度對於降水回波中的終端速度和雨滴粒徑分布寬度也具有很強的關聯性,隨者大氣垂直上升速度的增加,降水終端速度有變大的趨勢而雨滴粒徑分布寬度則有變小的趨勢。而上述特性成因有可能為強烈的上升氣流在某一雷達體積內將小粒徑的雨滴撐住和帶離而造成原始的雨滴粒徑分布改變,導致雨滴粒徑分布有截斷的情況出現。利用地面雨滴譜儀資料經由特意的截斷雨滴粒徑分布的數值計算結果與雷達反演出的結果相比有良好的一致性,此一物理特性也正好說明了由雷達資料所反演出空中的結果與由雨滴譜儀得到地面的結果彼此之間,其μ和Λ散佈的差異性。

    伽瑪雨滴粒徑分布中之斜率參數Λ和形狀參數μ之間的關係藉由長期地面雨滴譜儀觀測的資料也已完成分析與研究。其中發現降水終端速度與斜率參數Λ或形狀參數μ之間存在一指數型態的經驗關係,而根據此經驗關係式,進一步可得到μ和Λ的數學解析關係式,在降雨率大於5的情況下,μ和Λ的經驗式與解析式之間有良好的一致性。此外發現ln(No)、μ和Λ的機率密度函數可分別用對數常態分布、伽瑪分布與對數常態分布描述之。而根據其統計特性,伽瑪雨滴粒徑分布將可被模擬出來並獲得相對應的μ和Λ間之關係式,利用其相關物理限制條件小心地濾除資料後,可發現利用此一方式獲得的μ和Λ的關係式與地面雨滴譜得到的μ和Λ的經驗關係式相當地吻合,此一結果可說明伽瑪雨滴粒徑分布參數的統計特性在決定μ和Λ的經驗關係中扮演了相當關鍵的角色。此外從豐富的地面雨滴譜儀數據來看,μ-Λ經驗關係式的特徵確實代表了雨滴下落過程中碰撞破碎與聚合之間的平衡。


    With a theoretical derivation and long-term ground-based disdrometer measurements, we investigate vertical wind effect on the relation between slope (Λ) and shape (μ) parameters of the Gamma rain drop size distribution (DSD) estimated from the precipitation echoes of the Chung-Li VHF coherent scatter radar. We derive approximate equations to estimate μ and Λ from radar-measured precipitation terminal velocity and Doppler spectral width. The result shows that there is a tendency for the estimated μ and Λ values to increase with the increase of the upward wind velocity. In addition, the terminal velocity and the spread of the DSD estimated from the precipitation echoes bear a strong relation to the vertical air velocity. With increasing upward vertical air velocity, the terminal velocity tends to be large and the spread of the DSD has a tendency to be small. The dependence of the estimated μ and Λ values on the vertical wind velocity is very likely caused by the updraft that can support and carry away the smaller rain drops in the original drop size distribution in the radar volume, leading to a truncated DSD that is characterized by specific μ and Λ values. Numerical calculations of the intentionally truncated disdrometer-measured DSDs are in good agreement with the radar observations. These results can account for the difference in the patterns of μ-Λ scatter distributions between radar estimation in the air and disdrometer measurement on the ground.

    On the basis of disdrometer-measured rain drop size distribution (DSD) for the period from 2000 to 2008, the relation between shape (μ) and slope (Λ) parameters of the Gamma DSD are analyzed and investigated. We find that the empirical relation between the shape (or slope) parameter and the precipitation terminal velocity (VT) can be well described by an exponential function. With the help of the empirical μ-VT or Λ-VT relation, we derive an analytical μ–Λ relation and find that it almost perfectly matches the empirical 2nd order polynomial of the disdrometer-measured DSDs with rainfall rates greater than 5 mm hr-1. It is found that the probability density functions of ln(No), μ and Λ can be described by lognormal, Gamma and lognormal functions, respectively. With these statistical properties, the Gamma DSD is simulated and the empirical 2nd order polynomial of the corresponding μ–Λ relation can thus be obtained. After carefully sifting realistic data from the randomly generated DSD data based on physical constraints, the μ–Λ relation of the simulated Gamma DSDs is in good agreement with that of the disdrometer measurement. These results suggest that the statistical property of the Gamma DSD parameters plays crucial roles in determining the empirical μ–Λ relation. In addition, judging from the rich ground-based DSD data, the characteristics of the empirical relationship of μ–Λ relation represent the balance between the breakup and coalescence of raindrops and the aggregation process during their falling process.

    摘要 i Abstract iii 致謝 v 表目錄 ix 圖目錄 x 第一章 前言 1 1.1 VHF雷達和雨滴粒徑分布之研究方法發展史 1 1.2 研究動機與論文簡介 4 第二章 觀測原理與方法介紹 9 2.1 VHF雷達回波特性 9 2.2 回波機制 10 2.2.1 大氣折射指數 10 2.2.2 大氣回波機制 12 2.2.3 降水回波機制 16 2.3 雨滴粒徑分布模型 19 2.4 空中雨滴粒徑分布參數之反演方法 24 2.5 降水終端速度和頻譜寬為有限積分結果 29 第三章 相關儀器介紹與資料分析 32 3.1 中壢特高頻(VHF)雷達 32 3.2 二維影像雨滴譜儀(2DVD) 38 3.3 觀測資料取得及雷達參數設定 40 3.4 資料分析處理方法與流程 45 第四章 空中雨滴粒徑分布參數之反演結果 48 4.1 誤差校正及限制條件 48 4.2 雷達和相關儀器觀測結果 51 4.3 層狀降水和對流型態降水之影響 59 4.4 大氣垂直速度的影響 61 4.5 大氣頻譜寬的影響 68 4.6 討論與結論 69 第五章 伽瑪雨滴粒徑分布之參數特性分析 79 5.1 資料品管和總設定 79 5.2 斜率參數和形狀參數間的經驗關係及其特性 81 5.3 降水終端速度和形狀(斜率)參數間的關係 83 5.4 動量階數的影響 88 5.5 降雨率的影響 90 5.6 模擬(蒙地卡羅法)和觀測結果比較 92 5.7 討論與結論 97 第六章 學術貢獻和未來展望 104 6.1 學術貢獻 104 6.2 未來展望 105 參考文獻 107 附錄A 反演法推導過程和漸進式誤差分析 117 附錄B 雨滴譜儀規格特性表(中央大學科學四館頂樓) 120 附錄C 利用空拍機進行ST陣列天線垂直高度校正實驗 121

    (1)Atlas, D., R. C. Srivastava, and R. S. Sekhon, Doppler radar characteristic of precipitation at vertical incidence, Rev. Geophys., 11, 1-35, 1973.
    (2)Batten,L.J., Radar observations of the atmosphere, pp324, University of Chicago Press, Chicago, Ⅲ, 1973.
    (3)Basley, B.B. and K.S. Gage, The MST radar technique: Potential for middle atmosphere studies. Pure Appl. Geophys., 118, 452-493, 1980.
    (4)Bentley, W. Studies of raindrops and raindrop phenomena. Mon. Weath. Rev. 10, 450–456, 1904.
    (5)Brandes, E., G. Zhang,and J. Vivekanandan, Drop Size Distribution Retrieval with Polarimetric Radar: Model and Application, J. Appl. Meteor., 43, 461-475, 2004.
    (6)Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor., 47, 2238–2255, 2008.
    (7)Chandrasekar, V., and V. N. Bringi, Simulation of radar reflectivity and surface measurements of rainfall. J. Atmos. Oceanic Technol., 4, 464-478, 1987.
    (8)Chen, Meng-Yuan and Yen-Hsyang Chu, Beam broadening effect on Doppler spectral width of wind profiler, Radio Sci., 46, RS5013, doi:10.1029/2011RS004704, 2011.
    (9)Chilson, P. B., C. W. Ulbrich, M. F. Larsen, P. Perillat, and J. E. Keener,Observations of a tropical thunderstorm using a vertically pointing, dual-frequency, collinear beam Doppler radar. J. Atmos. Oceanic Technol.,10, 663–673, 1993.
    (10)Chu, Y.H., Effects of along- and cross-radar-beam winds on Doppler radar spectrum, Ann. Geophys., 23, 681–692, 2005.
    (11)Chu, Y.H., L.P.Chian, and C.H.Liu, The investigations of the atmospheric precipitation by using Chung-Li VHF radar, Radio Sci., 26, 717-729, 1991.
    (12)Chu, Y.H., and C.S.Lin, The severe depletion of turbulent echo power in precipitation using the Chung-Li VHF Doppler radar, Radio Sci., 29, 1311-1320, 1994.
    (13)Chu,Y.H., and J.S.Song, The observation of precipitation associated with cold front using VHF wind profiler and ground-based optical raingauge, Journal of geophysical research, 103, 11401-11409, 1998.
    (14)Chu,Y.H., S.P.Shih, C.L.Su, K.L.Lee, T.H.Lin, and W.C.Liang, A study on the relation between terminal velocity and VHF backscatter from precipitation particles using the Chung-Li VHF Radar, J.Appl.Meteor., 38, 1720-1728, 1999.
    (15)Chu, Y. H., and C. L. Su, An investigation of Slope-Shape Relation for Gamma Raindrop Size Distribution, J. Appl. Meteor., 47, 2531-2544, 2008.
    (16)Currier, P. E., S. K. Avery, B. B. Balsley, K. S. Gage, and W. L. Ecklund, Combined use of 50 MHz and 915 MHz wind profilers in the estimation of raindrop size distributions. Geophys. Res. Lett., 19, 1017–1020, 1992.
    (17)Eigel, J.D. and Moore, I.D. A simplified technique for measuring raindrop size and distribution. Amer. Soc. Agr. Eng. Trans., 24, 1079–1083, 1983.
    (18)Feingold, G., and Z. Levin, Application of the lognormal raindrop distribution to differential reflectivity radar measurement (ZDR), J. Atmos. Oceanic Technol., 4, 377-382, 1987.
    (19)Foote, G. B., and P. S. du Toit : Terminal velocity of rain- drops aloft. J. Appl. Meteor., 8, 249-253, 1969.
    (20)Friend, A. W., Theory and practice of tropospheric sounding by radar, Proc. IRE., 37, 116–138, 1949.
    (21)Fukao, S., K. Wakasugi, T. Sato, S. Morimoto, T. Tsuda, I. Hirota, I. Kimura, and S. Kato , Direct measurement of air and precipitation particle motion by very high frequency Doppler radar, Nature, 316, 712–714, 1985.
    (22)Fukao, S., T. Sato, T. Tsuda, S. Kato and K. Wakasugi, Observations of a mesoscale gravity wave during the passage of a cold front, J. Atmospheric Sci. 42(16), 1463-1473, 1985.
    (23)Geoffroy, O., A. P. Siebesma2, and F. Burnet, Characteristics of the raindrop distributions in RICO shallow cumulus, Atmos. Chem. Phys., 14, 10897–10909, 2014.
    (24)Gage,K.S., and B.B.Balsley, On the scattering and reflection mechanisms contributing to clear-air radar echoes from the troposphere, stratosphere, and mesosphere, Radio Sci., 15, 243-257, 1980.
    (25)Gage,K.S., W.L.Ecklund, and B.B.Balsley, A modified Fresnal scattering model for the parameterization of Fresnel returns, Radio Sci., 20, 1493-1501, 1985.
    (26)Gossard, E. E. and Richter, J. H. ‘The Shape of Internal Waves of Finite Amplitude from High-Resolution Radar Sounding of the Lower Atmosphere’,J. Atmospheric Sci. 27, 971–973, 1970.
    (27)Gunn, R. and G. D. Kinzer, The terminal velocity of fall for water droplets in stagnant air, J. Meteor, 6, 243-248, 1949.
    (28)Green, J. L., R. H. Winkler, J. M. Warnock, W. L. Clark, K. S. Gage, and T. E. VanZandt, Observations of enhanced clear air reflectivity associated with convective cloud, in Proceedings of 18th Conference on Radar Meteorology, pp. 88-93, American Meteorological Society, Boston, Mass., 1978.
    (29)Houze, R.A., Stratiform Precipitation in Regions of Convection: A Meteorological Paradox Bulletin of the American Meteorological Society, Vol. 78,, No. 70, 2179-2196, 1997.
    (30)Joss, J. and Waldvogel, A., Ein Spektrograph f'tir Niederschlagstropfen mit automatischer Au-swertung. Pure Appl. Geophys., 68: 240-246, 1967.
    (31)Kobayashi, T., S. Fukao, T. Tsuda, T. Nakamura and S. Kato, Separation of precipitation echoes from clear-air echoes using spectral width observed with the MU radar, Radio Sci., 42(6), 2007.
    (32)Kohl, R.A. Drop size distributions from medium-sized agricultural sprinklers. Am. Soc. Agr. Eng. Trans., 17, 690–693, 1974.
    (33)Kanofsky, L., and P. Chilson, An Analysis of Errors in Drop Size Distribution Retrievals and Rain Bulk Parameters with a UHF Wind Profiling Radar and a Two-Dimensional Video Disdrometer, J. Atmos. Oceanic Tech., 25, 2282-2292, 2008.
    (34)Konwar, M., S. K. Das, S. M. Deshpande, K. Chakravarty, and B. N. Goswami, Microphysics of clouds and rain over the Western Ghat, J. Geophys. Res. Atmos., 119, doi:10.1002/2014JD021606, 2014.
    (35)Kozu, T., and K. Nakamura, Rainfall parameter estimation from dual-radar measurements combining reflectivity profiles and path-integrated attenuation, J. Atmos. Oceanic Technol., 8, 259-270, 1991.
    (36)Kruger, A, and W.F.Krajewski, Two-dimension Video disdrometer – Description, J. Atmos. Oceanic Technol., 19, 602-617, 2002.
    (37)Kumar, L.S., Y. H. Lee, and J. T. Ong, Two-Parameter Gamma Drop Size Distribution Models for Singapore, IEEE Geosci. Remote Sens., 49, 3371-3380, 2011.
    (38)Lam, H. Y, J. Din, and S. L. Jong, Statistical and Physical Descriptions of Raindrop Size Distributions in Equatorial Malaysia from Disdrometer Observations, Advances in Meteorology, Article ID 253730, 2015.
    (39)Larsen, M. F., and J. Rottger, Observation of thunderstorm reflectivities and Doppler velocities measured at VHF and UHF. J. Atmos. Oceanic Technol., 4, 151-159, 1987.
    (40)Laws, J.O. “Measurements of fall velocity of water drops and raindrops, ” Transactions of the American, Geophysical Union,24,452, 1941.
    (41)Laws, J. O. and D. A. Parson, “The relation of raindrop-size to intensity,” Trans. Am. Geophys. Union, 24: 452-460, 1943.
    (42)Lu, C. Y., T. Tsuda and S. Kato, Vertical structure of precipitation systems observed with the Equatorial Atmosphere Radar (EAR), Journal of Atmospheric and Solar-Terrestrial Physics, 73(13), 1760-1770, 2011.
    (43)Maguire, W. B., and S. K. Avery, Retrieval of raindrop size distribution using two Doppler wind profilers: Model sensitivity testing, J. Appl. Meteor., 33, 1623-1635, 1994.
    (44)Marshall, J. S., and W. M. K. Palmer, The of raindrop with size, J. Meteor., 5, 165-166, 1948.
    (45)Marshall, J. S., and W. M. K. Palmer, The of raindrop with size, J. Meteor., 5, 165-166, 1948.
    (46)Moisseev, D. N., and V. Chandrasekar, Examination of the μ-Λ relation suggested for drop size distribution parameters. J. Atmos. Oceanic Technol., 24, 847–855, 2007.
    (47)Oftersten, H., Atmospheric structure and radar back- scattering in clear air. Radio Sei., 4, 1179-1193, 1969.
    (48)Peters, G., B. Fischer, H. Münster, M. Clemens, and A. Wagner, Profiles of raindrop size distributions by micro rain radars, J. Appl. Meteorol., 44, 1930–1949, 2005.
    (49)Rajopadhyaya, D. K., P. T. May, and R. A. Vincent, A general approach to the retrieval of rain dropsize distributions from wind profiler Doppler spectra: Modeling results. J. Atmos. Oceanic Technol., 10, 710–717, 1993.
    (50)Rao, Narayana, T., N. V. P. Kirankumar, B. Radhakrishna, and D. Narayana Rao, On the variability of the shape-slope parameter relations of the gamma raindrop size distribution model, Geophys. Res. Lett., 33, L22809, doi:10.1029/2006GL028440, 2006.
    (51)Raupach, T.H., and A. Berne, Correction of raindrop size distributions measured by Parsivel disdrometers, using a two-dimensional video disdrometer as a reference, Atmos. Meas. Tech., 8, 343–365, 2015.
    (52)Rayleigh, Phil. Mag., xli., pp. 107, 274, 447; Collected Works, i., pp. 87, 104, 518, 1871.
    (53)Rennie, S. J., A. J. Illingworth and R. J. Hogan, A new technique to separate returns due to insects and birds from those due to atmospheric motion, J. Appl. Meteor., 11(3), 287-296, 2004.
    (54)Sch nhuber,M., About interation of precipitation and electromagnetic waves, Institute of Communications and Wave Propagation, Technical University, Graz, doctoral thesis, 1998.
    (55)Schuur, T.J., A.V. Ryzhkov, D.S.Zrnic, and M. Schonhuber, Drop size distributions measured by a 2D video disdrometer: comparison with dual-polarization radar data, J. Appl. Meteor., 40, 1019-1034, 2001.
    (56)Seifert, A., On the shape–slope relation of drop size distribution in convective rain. J. Appl. Meteor., 44, 1146–1151, 2005.
    (57)Shusse, Y., S. Fukao and H. Luce, Classification of VHF radar echoes associated with strtiform precipitation and their statistical characteristics, Radio Sci., 51(3), 174-185, 2016.
    (58)Su, C. L., and Y. H. Chu, Analysis of Terminal Velocity and VHF Backscatter of Precipitation Particles Using Chung-Li VHF Radar Combined with Ground-based Disdrometer, Terr. Atmos. Ocean. Sci., 18, 97-116, 2007.
    (59)Su, C.-L., Y.H.Chu and I-Y. Lo, Negative Correlation between Terminal Velocity and VHF Radar Reflectivity from Precipitation: Observation and Plausible Explanation, Ann. Geophys., 27, 1631-1642, 2009.
    (60)Tatarskii, V.I., Wave propagation in a turbulent medium. McGraw-Hill Book Company Inc.,New York, United States, 285 pp, 1961.
    (61)Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, “The concept of “normalized” distribution to describe raindrop spectra: a tool for cloud physics and cloud remote sensing,” Journal of Appl. Meteor., vol. 40,no. 6, pp. 1118–1140, 2001.
    (62)Tokay, A., W. A. Petersen, P. Gatlin, and M. Wingo, Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Oceanic Technol., 30, 1672–1690, 2013.
    (63)Ulbrich, C, W., Natural variation in the analytical form of the raindrop size distribution, J. Climate Appl. Meteor., 22, 1764-1775, 1983.
    (64)Ulbrich, C. W., and D. Atlas, Rainfall Microphysics and Radar Properties: Analysis Methods for Drop Size Spectra, J. Appl. Meteor., 37, 912-923, 1983.
    (65)Wakasugi, K., A Mitsutani, M. Matsuno, S. Fukao, and S. Kato, A direct method for deriving drop-size distribution and vertical air velocities from VHF Doppler radar spectra, J. Atmos. Oceanic Technol., 3,623-629, 1986.
    (66)Wait, J. R. Chapt er VII, Electromagnetic waves instratified media (Perga mon Press, Oxford ), 1962.
    (67)Wiesner, J., Beitr~ige zur Kenntnis des tropischen Regens. Sitzungsber. Akad. Wiss. Math.-Na-turw. KI., Wien, 1897 pp, 1985.
    (68)Wilks, D. S., Rainfall intensity, the Weibull distribution, and estimation of daily surface runoff, J. Appl. Meteor., 28, 52-58, 1989.
    (69)Yeh, K. C. and Liu, C. H.: Acoustic-gravity waves in the upper atmosphere, Rev. Geophys. Space Phys., 12, 193–216, 1974.
    (70)Zhang, G.., J.Vivekanandan, and A.Brandes, A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830-841, 2001.
    (71)Zhang, G., J. Vivekanandan, and E. Brandes, R. Meneghini, and T. Kozu, The shape–slope relation in gamma raindrop size distributions: Statistical error or useful information? J. Atmos. Oceanic Technol., 20, 1106–1119, 2003.
    (72)朱延祥,MST雷達回波機制的研究,博士論文,國立中央大學,1998。
    (73)朱延祥,剖風儀觀測原理與應用,pp74。
    (74)朱延祥,台灣地區大氣折射率之特性分析及預測。
    (75)朱延祥,中壢VHF雷達遙測大氣原理與應用課程教材。
    (76)蘇清論,大氣風場與降水探測技術的建立與研究,博士論文,國立中央大學,2004。

    QR CODE
    :::