跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳彥宏
Yen-Hung Chen
論文名稱: 脈衝雷射誘發雙氣泡間薄液層之不穩定性
Instability of thin liquid layers between two pulsed laser induced cavitation bubbles
指導教授: 伊林
Lin I
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 97
語文別: 英文
論文頁數: 88
中文關鍵詞: 氣泡雷射
外文關鍵詞: Bubble, Cavitation, Laser
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用光學顯微鏡下的高速攝影技術來研究兩個鄰近的脈衝雷射所誘發的微米氣泡之間透過薄液層的交互作用。利用雙雷射光束精準地以不同雷射能量、發射時間、聚焦位置所産生的氣泡來研究被氣泡局限的薄液層在不同擠壓條件下的不穩定性。在對稱擠壓的情況下,被局限的薄液層可以潤滑快速靠近的氣泡表面而避免氣泡碰觸所造成的接合。一旦以不同雷射能量或發射時間來産生氣泡去破壞擠壓條件的對稱性,局限在氣泡間的潤滑液層會變成不穩定的狀態。在能量不對稱的情況,爆發性的沸騰效應導致氣泡團簇的形成進而使不穩定的潤滑液層破裂。受到氣泡團簇干擾所引起的潤滑液層不穩定性可藉由研究在氣泡間的潤滑液層以雷射産生的氣泡干擾後所得的結果而了解。在時間不對稱的情況下,氣泡團簇在受到壓力梯度而展開並且進入氣泡內的潤滑液層周圍形成。隨著時間不對稱的加強,氣泡間的薄液層不能再被局限住。進而我們研究一個極端的情況,一個在不受約束的氣泡表面邊的薄液層如何受到一個膨脹氣泡推擠的影響下造成形變。在不受約束的氣泡表面旁作非均向性膨脹的氣泡形成一個被液體薄層覆蓋的突起。隨著氣泡之間的距離減少,薄液層的破壞使得被推擠的液層形變從尖剌狀的突起轉變成冠狀的水花。此時,從氣泡間的接合處流入的液體噴射流發散且造成薄液層破壞。另外,我們發現不受約束的氣泡表面上的曲率會影響液層的形變。流入高曲率氣泡表面的入射水流會因此被集中,而此集中的入射水流會在另一個膨脹氣泡表面上造成反噴射流的形成。


    The interaction of two nearby pulsed laser induced expanding bubbles mediated with a thin liquid layer in a confined liquid sheet is investigated experimentally using high-speed photography under the optical microscope. The precise manipulation of dual laser beams for generating bubbles at the different laser energies, onset times, and bubble positions enables the study of the instability of the trapped liquid layer under the different condition of compression. The thin liquid layer trapped by the two symmetrically growing bubbles lubricates the nearby bubble surfaces and prevents the bubble coalescence. As the symmetry is broken by generating two bubbles at the different laser energies or the onset times, the lubrication layer becomes unstable. In the energy-asymmetric case, the explosive boiling leads to the bubble cluster formation which destabilizes the lubrication layer. The breakup of the thin lubrication layer perturbed by the boiling induced bubbles can be understood by studying the thin lubrication layer perturbed by a pulsed laser generated defect bubble, where the single defect bubble causes the bubble cluster formation. In the time-asymmetric case, the bubble cluster appears near the lubrication layer which spreads into the bubble under the pressure gradient. The thin liquid layer cannot be trapped anymore as the time-asymmetry is enhanced. The deformation of the thin liquid layer near a free bubble surface repelled by an expanding bubble is studied in the highly time-asymmetric case. The protrusion of the anisotropically expanding bubble toward the free bubble surface is shelled by a thin liquid layer. As decreasing the inter-bubble distance, the deformation structure of the repelled thin liquid shell transits from the single spike to the crown-shaped splash, where the liquid jets flowing through the junctions between the two bubbles become divergent and make the thin liquid layer break. The curvature of the free bubble surface affects the deformation structure, where flow through the highly curved bubble surface is focused. Therefore, it causes the sharp transition of the deformation structure. The localized flow through the highly curved free surface leads to the counter-jet formation on the other expanding bubble.

    1 Introduction 1 2 Background 5 2.1 Bubble dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Phase change, cavitation, nucleation . . . . . . . . . . 5 2.1.2 Mechanism of laser ablation . . . . . . . . . . . . . . . 6 2.1.3 Acoustic wave induced cavitation and secondary cavitation bubble . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.4 Rayleigh-Plesset equation . . . . . . . . . . . . . . . . 9 2.1.5 Nonspherical perturbation . . . . . . . . . . . . . . . . 11 2.2 Instability on bubble surfaces . . . . . . . . . . . . . . . . . . 11 2.2.1 Bubble interaction near a rigid wall . . . . . . . . . . . 11 2.2.2 Bubble interaction near a free surface . . . . . . . . . . 12 2.2.3 Fragmentation and entanglement in mutual bubble interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Hydrodynamics in a thin fluid layer . . . . . . . . . . . . . . . 19 2.3.1 Lubrication theory . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Lubrication and non-coalescence of bubbles . . . . . . . 20 2.3.3 Destabilization of thin liquid layer . . . . . . . . . . . . 21 3 Experimental Setup and Measurement 23 3.1 Laser-microscope system for bubble generation . . . . . . . . . 24 3.1.1 Manipulation of multiple laser beams . . . . . . . . . . 24 3.2 Automatic control system . . . . . . . . . . . . . . . . . . . . 25 3.3 Image acquisition system . . . . . . . . . . . . . . . . . . . . . 26 3.4 Thin liquid sheet in microfludic devices . . . . . . . . . . . . . 26 i 4 Results and discussion 28 4.1 Dynamics of lubrication between expanding bubbles . . . . . . 28 4.1.1 Pulsed laser induced bubble growth in a micro-gap . . 28 4.1.2 Lubrication layer formation . . . . . . . . . . . . . . . 32 4.1.3 Effects of initial bubble separation and compression strength . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1.4 Temporal evolution of the lubrication layer thickness . 33 4.2 Lubrication layer formation under energy-asymmetric compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.1 Energy-asymmetric compression induced lubrication instability . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.2 Bubble cluster formation in lubrication layers . . . . . 38 4.3 Instability of laser perturbed lubrication layers . . . . . . . . . 43 4.3.1 Instability of multiple lubrication layers . . . . . . . . . 43 4.3.2 Bubble expansion in thin lubrication layers . . . . . . . 44 4.3.3 Bubble defect trapped in lubrication layers . . . . . . . 46 4.3.4 Effect of lubrication layer thickness . . . . . . . . . . . 50 4.4 Lubrication layer formation under time-asymmetric compression 54 4.4.1 Lubrication under a slightly time-asymmetric compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4.2 Bubble entanglement in the highly time-asymmetric interaction . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4.3 Transition of deformation structure . . . . . . . . . . . 56 4.5 Expanding bubble nearby a free surface mediated with thin liquid layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.5.1 Spike formation on a repelled liquid layer . . . . . . . . 61 4.5.2 Transition of deformation structure . . . . . . . . . . . 63 4.5.3 Cavitation splashing on a free bubble surface . . . . . . 63 4.5.4 Breaking of perturbed thin liquid layers . . . . . . . . . 64 4.5.5 Curvature effect and hydrodynamic focusing . . . . . . 66 4.5.6 Backward jet formation . . . . . . . . . . . . . . . . . 67 5 Conclusion 70 ii

    [1] From bouncing to floating: noncoalescence of drops on a fluid bath, Y.
    Couder, E. Fort, C. H. Gautier and A. Boudaoud, Phys. Rev. Lett. 94,
    177801 (2005).
    [2] Electrowetting induced oil film entrapment and instability, Adrian Staicu
    and Frieder Mugele, Phys. Rev. Lett. 97, 167801 (2006).
    [3] Critical thickness of microscopic thin liquid films, Emil D. Manev and
    Anh V. Nguyen, Advances in Colloid and Interface Science 114-115,
    133-146 (2005).
    [4] Drop splashing on a dry smooth surface, Lei Xu, Wendy W. Zhang, and
    Sidney R Nagel, Phys. Rev. Lett. 94, 184505 (2005).
    [5] Air entrainment by a viscous jet plunging into a bath, Elise Lorenceau
    and David Quere, Phys. Rev. Lett. 93, 254501 (2004).
    [6] Controlled multibubble surface cavitation, Nicolas Bremond, Manish
    Arora, Claus-Dieter Ohl, and Detlef Lohse, Phys. Rev. Lett. 96, 224501
    (2006).
    [7] Interaction of cavitation bubbles on a wall, Nicolas Bremond, Manish
    Arora, Stephan M. Dammer, and Detlef Lohse, Phys. Fluids 18, 121505
    (2006).
    [8] Experimental investigation of Richtmyer-Meshkov instability before and
    after the reflected shock compression, Georges Jourdan, and Lazhar
    Houas, Phys. Fluids 8(6), 1353 (1996).
    [9] Density evolution within a shock accelerated gaseous interface, Georges
    Jourdan, Lazhar Houas, and M. Billiotte, Phys. Phys. Lett. 78, 452
    (1997).
    73
    [10] T. E. Faber, Fluid Dynamics for Physicists (Cambridge University
    Press, New York, 1995).
    [11] Luminescence from spherically and Aspherically collapsing laser induced
    bubbles, C. D. Ohl, O. Lindau, and W. Lauterborn, Phys. Phys. Lett. 80,
    393 (1998).
    [12] Spectrum of luminescence from laser-created bubbles in water, Ohan
    Baghdassarian, Han-Ching Chu, Bernd Tabbert, and Gray A. Williams,
    Phys. Phys. Lett. 86, 4934 (2001).
    [13] How sanpping shrimp snap: through cavitating bubbles, Michel Versluis,
    Barbara Schmitz, Anna von der Heydt, and Detlef Lohse, Science Vol.
    289, 2114 (2000).
    [14] Snapping shrimp make flashing bubbles, Detlef Lohse, Barbara Schmitz,
    and Michel Versluis, Nature Vol. 413, 477 (2001).
    [15] Deadly strike mechanism of a mantis shrimp, S. N. Patek, W. L. Korff,
    and R. L. Caldwell, Nature Vol. 428, 819 (2004).
    [16] Shock wave emissions of a sonoluminescing bubble, Joachim Holzfuss,
    Mattias Ruggeberg, and Andreas Billo, Phys. Phys. Lett. 81, 5434 (1998).
    [17] Microimplosions: cavitation collapse and shock wave emission on a
    nanosecond time scale, R. Pecha and B. Gompf, Phys. Phys. Lett. 84,
    1328 (2000).
    [18] Shasowgraphic imaging of the sub-ps laser-induced forward transfer process,
    D. G. Papazoglou, A. Karaiskou, I. Zergioti, and C. Fotakis, Appl.
    Phys. Lett. 81, 1594 (2002).
    [19] Christopher E. Brennen, Cavitation and bubble dynamics, New York
    Oxford (1995).
    [20] The final stage of the collapse of a cavitation bubble close to a rigid
    boundary, E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, Phys.
    Fluids 14, 85 (2002).
    [21] Interaction of laser-induced cavitation bubbles with composite surfaces,
    Y. Tomita and T. Kodama, J. Appl. Phys. 94, 2809 (2003).
    74
    [22] Collapse of multiple gas bubbles by a shock wave and induced impulsive
    pressure, Yukio Tomita, Akira Shima, and Takashi Ohno, J. Appl. Phys.
    56(1), 125 (1984).
    [23] Dynamic behavior of two-laser-induced bubble in water, Y. Tomita, A.
    Shima and K. Sato, Appl. Phys. Lett. 57(3), 234 (1990).
    [24] The dynamics of two air bubbles loaded by an underwater shock wave,
    T. Kodama, K. Takayama, and N. Nagayasu, J. Appl. Phys. 80, 5587
    (1996).
    [25] Interaction of cavitation bubbles with a free surface, P. B. Robinson, J.
    R. Blake, T. Kodama, A. Shima, and Y.Tomita, J. Appl. Phys. 89, 8225
    (2001).
    [26] Bubble interactions near a free surface, A. pearson, E. Cox, J. R. Blake,
    and S. R. Otto, Engineering Analysis with Boundary Element 28, 295-313
    (2004).
    [27] Cavitation Bubble Dynamics inside Liquid Drops in Microgravity, D.
    Obreschkow, P. Kobel, N. Dorsaz, A. de Bosset, C. Nicollier, and M.
    Farhat1, Phys. Rev. Lett. 97, 094502 (2006).
    [28] Cavitation bubble behavior inside a liquid jet, Etienne Robert, Mohamed
    Farhat, Peter A. Monkewitz, and Franois Avellan, Phys. Fluids
    19, 067106 (2007).
    [29] Secondary cavitation due to interaction of a collapsing bubble with a
    rising free surface, Y. Tomita, T. Kodama, and A. Shima, Appl. Phys.
    Lett. 59(3), 274 (1991).
    [30] Femfosecond, picosecond and nanosecond laser ablation of solid, B.N.
    Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann,
    Appl. Phys. A 63, 109 (1996).
    [31] Ablation of solids under femtosecond laser pulses, Danny Perez and
    Laurent J. Lewis, Phys. Phys. Lett. 89, 255504 (2002).
    [32] Surface charging and impulsive ion ejection during ultrashort pulsed
    laser ablation, R. Stoian, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel,
    Phys. Phys. Lett. 88, 097603 (2002).
    75
    [33] Short-pulse laser ablation of solids: from phase explosion to fragmentation,
    Patrick Lorazo, Laurent J. Lewis, and Michel Meunier, Phys. Phys.
    Lett. 91, 225502 (2003).
    [34] Role of laser-induced plasma formation in pulsed cellular microsurgery
    and micromanipulation, Vasan Venugopalan, Arnold Guerra , Kester Nahen,
    and Alfred Vogel, Phys. Rev. Lett. 88, 078103 (2002).
    [35] Investigation of laser-induced cell lysis using time-resolved imaging,
    Kaustubh R. Rau, Arnold Guerra , Alfred Vogel, and Vasan Venugopalan,
    Appl. Phys. Lett. 84, 2940 (2004).
    [36] Cavitation inception following shock wave passage, C. D. Ohl, Phys.
    Fluids 14, 3512 (2002).
    [37] Cavitation inception on microparticles: a self-propelled accelerator,
    Manish Arora, Claus-Dieter Ohl, and Kund Aage Morch, Phys. Phys.
    Lett. 92, 174501 (2004).
    [38] Interaction and Fragmentation of Pulsed Laser Induced Microbubbles
    in a Narrow Gap, Y. H. Chen, H. Y. Chu, and Lin I, Phys. Rev. Lett. 96,
    034505 (2006).
    [39] Dynamics of impacting a bubble by another pulsed laser induced bubble:
    jetting, fragmentation and entanglement, Y. H. Chen and Lin I, Phys.
    Rev. E 77, 026304 (2008).
    [40] Vortex model and simulations for Rayleigh-Taylor and Richtmyer-
    Meshkov instabilities, Sung-Ik Sohn, Phys. Rev. E 69, 036703 (2004).
    [41] Distortion of a spherical gaseous interface accelerated by plane shock
    wave, Guillaume Layes, Georges Jourdan, and Lazhar Houas, Phys. Rev.
    Lett. 91, 174502 (2003).
    [42] Experimental investigation of a strongly shocked gas bubble, Devesh
    Ranjan, Mark Anderson, Jason Oakley, and Riccardo Bonazza, Phys.
    Rev. Lett. 94, 184507 (2005).
    [43] Pressure effect in a shock-wave-plasma interaction induced by a focused
    laser pulse, A. Sasoh, T. Ohtani, and K. Mori1, Phys. Rev. Lett. 97,
    205004 (2006).
    76
    [44] Shock-wave-induced jetting of micro-size bubbles, C. D. Ohl and R.
    Ikink, Phys. Phys. Lett. 90, 214502 (2003).
    [45] Explosive vaporization of superheated liquids by boiling fronts, P.
    Reinke and G. Yadigaroglu, International Hournal of Multiphase Flow
    27, 1487-1516 (2001).
    [46] Dynamics of explosive boiling of a droplet, D. L. Frost, Phys. Fluids
    31(9), 2554 (1988).
    [47] Transient impact of a liquid column on a miscible liquid surface, B.
    Kersten, C. D. Ohl, and A. Prosperetti, Phys. Fluids 15, 821 (2003).
    [48] Mechanism of air entrainment by a disturbed liquid jet, C. D. Ohl, H.
    N. Oguz, A. Prosperetti, Phys. Fluids 12, 1710 (2000).
    [49] The splash of a liquid drop, Francis H. Harlow and John P. Shannon, J.
    Appl. Phys. 38, 3855 (1967).
    [50] Splashing impact of a single drop onto very thin liquid films, An-Bang
    Wang and Chi-Chang Chen, Phys. Fluids 12, 2155 (2000).
    [51] On some common features of drop impact on liquid surfaces, Alexander
    I. Fedorchenko and An-Bang Wang, Phys. Fluids 16, 1349 (2004).
    [52] Nonlinear dynamics and breakup of free-surface flows, Jens Eggers, Rev.
    Mod. Phys. 69, 865 (1997).
    [53] Physics of liquid jets, Jens Eggers and Emmanuel Villermaux, Rep. Prog.
    Phys. 71, 036601 (2008).
    [54] Instability growth patterns of a shock-accelerated thin fluid layer, J. W.
    Jacobs, D. L. Klein, D. G. Jenkins, and R. F. Benjamin, Phys. Rev. Lett.
    70, 583-586 (1993).

    QR CODE
    :::