跳到主要內容

簡易檢索 / 詳目顯示

研究生: 雲大賢
Tanant Waritanant
論文名稱: 利用楔形稜鏡與繞射光柵設計非光線追跡薄型太陽能集光器
Study of Non-Tracking Thin Profile Solar Concentrators Designed Using Wedge Prisms and Diffractive Gratings
指導教授: 鍾德元
Te-yuan chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 99
語文別: 英文
論文頁數: 70
中文關鍵詞: 踏陽能集光器光柵楔形稜鏡
外文關鍵詞: Wedge prism, Grating, Solar concentrator
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討利用非光線追跡設計太陽能電池集光器,本設計包含楔形棱鏡、繞射光柵、與體積小等。利用模擬演算法證明此實驗結果與給出此條件與參考數據。
    模擬發現此設計太陽能電池集光器,波長可接收範圍在500 nm以上。太陽能集光器的長度與厚度的比例可以超過7,輸入單位面積強度與輸出單位面積強度比值超過3.7,二維的角度容忍度可達到 ±53 °和±13 °。


    This thesis explores non-tracking thin profile solar concentrator designs that comprised of a wedge prism and diffractive gratings and their geometrical limitations. Full explanation of the simulation algorithm used to simulate the results in this thesis is also given.
    The simulation result of the last design shows that a concentrated broad solar spectrum of up to 500 nm can be achieved by utilizing two diffractive gratings. One blazed transmission grating located on the top and another blazed reflection grating placed below bottom surfaces of the wedge prism. The gratings diffract the incident light guiding it into the wedge prism. The guided light is then projected onto the solar module located at the end face of the prism. With this coupling mechanism, the concentrator’s length-to-thickness ratio can exceed 7, the maximum concentration ratio exceeds 3.7, and angular tolerance can reach ±53° and ±9° in the two planes of incidence. In addition, the polarization dependence, as a property of the one-dimensional diffractive grating, is suppressed.

    Table of contents 中文摘要.................................................................................................................................................... IV Abstract V Table of contents VI List of figures VIII List of tables X Chapter 1 Introduction - 1 - 1.1 Solar concentrators for Photovoltaic application - 1 - 1.2 Fundamentals - 4 - 1.2.1 Wedge Prisms - 4 - 1.2.2 Blazed gratings - 5 - 1.3 Geometrical limitations - 7 - 1.3.1 Simple wedge design - 8 - 1.3.2 Wedge prism with sawtooth-profile mirror - 8 - Chapter 2 Simulation tools - 10 - 2.1 Rigorous coupled-wave analysis (RCWA) of one-dimensional grating - 10 - 2.2 Simple Ray tracing - 14 - 2.3 Details of the simulation process - 14 - Chapter 3 Designs & Results - 16 - 3.1 Geometrical limitation cases - 16 - 3.1.1 Simple wedge - 16 - 3.1.2 Wedge with sawtooth profile mirror - 18 - 3.2 Initial design concept - 19 - 3.3 Single wedge prism design with reflection grating - 20 - 3.3.1 Acceptance angle - 20 - 3.3.2 Collection efficiency spectrum - 21 - 3.3.3 Change in collection efficiency due to the change in design parameters - 22 - 3.4 Double wedge prism design with reflection grating - 30 - 3.4.1 Acceptance angle - 30 - 3.4.2 Collection efficiency spectrum - 31 - 3.4.3 Change in collection efficiency due to the change in design parameters - 32 - 3.5 Single wedge prism design with reflection and transmission grating - 42 - 3.5.1 Acceptance angles - 42 - 3.5.2 Governing equations - 43 - 3.5.3 Simulation results - 44 - 3.5.4 Output characteristic - 48 - Chapter 4 Discussion - 52 - 4.1 Experimental verification of the simulation - 52 - 4.2 Comparison of collection efficiencies and concentration ratios - 54 - 4.3 Output profile & further concentration ratio enhancing possibility - 54 - Chapter 5 Conclusion - 58 - References - 59 - Appendix - 61 -

    [1] Würfel P., [Physics of Solar Cells: From Principles to New Concepts], Wiley-VCH, Darmstadt, Chapter 8 (2005).
    [2] J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Applied Optics, Vol. 49, Issue 5, pp. 858-870 (2010).
    [3] Lee C.-Y., Chou P.-C., Chiang C.-M., Lin C.-F. Sun Tracking Systems: A Review. Sensors. (2009).
    [4] C. M. Wang, H. I. Huang, J. W. Pan, H. Z. Kuo, H. F. Hong, H. Y. Shin, and J. Y. Chang, “Single stage transmission type broadband solar concentrator,” Optics Express, Vol. 18, Issue S2, pp. A118-A125 (2010).
    [5] Y. Shuai, X. L. Xia, and H. P. Tan, “Radiation performance of dish solar concentrator/cavity receiver systems,” Solar Energy, Volume, 82, Issue 1 (2008).
    [6] J. J. O''Gallagher, R. Winston, and R. Gee, "Nonimaging solar concentrator with near-uniform irradiance for photovoltaic arrays", Proc. SPIE 4446, 60 (2001).
    [7] T. Maruyama and S. Osako, “Wedge-shaped light concentrator using total internal reflection,” Solar Energy Materals& Solar Cells 57, 75-83 (1999).
    [8] R. K. Kostuk, J. Castro, B. Myer, D. Zhang and G. Rosenberg, “Holographic Elements in Solar Concentrator and Collection Systems,” Proc. of SPIE Vol. 7407, 74070E (2009).
    [9] R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
    [10] J. H. Karp, E. J. Tremblay, and J. E. Ford, “ Planar micro-optics solar concentrator,” Opt. Express 18, 1122-1133 (2010).
    [11] M. Park, K. Oh, J. Kim, H. W. Shin, and B. D. Oh, “ A tapered dielectric waveguide solar concentrator for a compound semiconductor photovoltaic cell,” Opt. Express 18, 1777-1787 (2010).
    [12] T. Waritanant, S. Boonruang and T. Y. Chung, "A study of thin profile solar concentrators using wedge prism with diffractive grating," Proc. SPIE 7652, 76521J (2010)
    [13] M. G. Moharam, Eric B. Grann, Drew A. Pommet, and T.K.Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A/Vol.12,No.5 (1995).
    [14] M. G. Moharam, D. A. Pommet, E. B. Grann, and T.K.Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” Vol. 12, No. 5, J. Opt. Soc. Am. A (1995).
    [15] Research note of Dr. SakoolkanBoonruang, “Rigorous coupled-wave analysis of planar diffraction (RCWA of 1D-grating)," (2007).

    QR CODE
    :::