跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳億俊
Yi-Jyun Wu
論文名稱: 基於IEEE 802.11ax DFT-S-OFDM 傳輸之波束成型設計與SDR實現
SDR Realization of DFT-s-OFDM Beamforming Transmission Design Based on IEEE 802.11ax Standard
指導教授: 張大中
Dah-Chung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 81
中文關鍵詞: 802.11ax延展行傅立葉轉換正交分頻多工
外文關鍵詞: 802.11ax, DFT-S-OFDM
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單載波頻域均衡(SC-FDE)系統近年來受到越來越多關注,因為其有著與正交分頻多工(Orthogonal Frequency Division Multiplexing,OFDM)相近的效能也有著相似的模塊,SC-FDE不僅能有效的對抗多路徑衰減,且SC-FDE的峰均值功率比較OFDM低,是寬頻無線通訊系統物理層的主要技術之一,並且SC-FDE的發射機價格比OFDM來的低,因為OFDM在傳送端設計較複雜。離散傅立葉變換擴展正交分頻多工(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,DFT-S-OFDM)就是一種結合SC-FDE與OFDM優點的技術。

    本篇論文主要是應用Wi-Fi6 IEEE 802.11ax的前導序列規格與DFT-S-OFDM系統做結合並加入波束成型在軟體定義無線電上做傳收。利用IEEE 802.11ax的前導序列做符元時間同步、載波頻率同步、通道估計,任何一項估計對於DFT-S-OFDM都很重要。波束成型則是需要知道先知道訊號到達的角度(Angle of Arrival,\ AOA),以找到訊號能量最強的部份,接著用NLMS演算法計算權重並更新且以此權重來優化訊號。本文的另一大特色則是將以上系統應用在軟體定義無線電(SDR)上以達到實做的目的。


    Single-Carrier Frequency Domain Equalization (SC-FDE) system has received more and more attention in recent years, because it has similar performance and similar modules to Orthogonal Frequency Division Multiplexing(OFDM), SC-FDE can not only effectively combat multi-path fading , but also the peak-average power of SC-FDE is lower than that of OFDM.
    Besides,the complexity requirement of the SC-FDE transmitter is lower than that of OFDM.Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing(DFT-S-OFDM) is a technology combining the advantage of SC-FDE and OFDM.

    This thesis mainly considers the Wi-Fi6 IEEE 802.11ax preamble sequence specification to combine the DFT-S-OFDM system and add the beamforming technique to design a transceiver on the Software-Defined Radio(SDR) platform.The preamble sequence of IEEE 802.11ax is used for symbol time synchronization、carrier frequency synchronization and channel estimation.Beamforming needs to know the angle of arrival(AOA)\\of the signal to find the part with the strongest signal energy,and then uses the NLMS algorithm to calculate and update the antenna weights for optimizing the received SNR.Another feature of this work is that the above system is realized with SDR for the purpose of demonstrating feasibility.

    目 錄 中文摘要-------------------------------------------------i 英文摘要-------------------------------------------------iii 圖目錄---------------------------------------------------ii 表目錄---------------------------------------------------iii 第 1 章 緒論----------------------------------------------1 1.1 簡介--------------------------------------------------1 1.2 章節架構----------------------------------------------4 第 2 章 DFT-S-OFDM系統模型--------------------------------5 2.1 DFT-S-OFDM系統簡介------------------------------------5 2.2 DFT-SOFDM傳送端架構-----------------------------------8 2.3 802.11ax標準-----------------------------------------10 2.3.1 802.11ax Preamble------------------------------13 2.4 DFT-S-OFDM 接收端架構---------------------------------16 2.5 軟體定義無--------------------------------------------19 第 3 章 載波頻率同步與時間同步-----------------------------22 3.1 符元時間同步(STO)-------------------------------------22 3.1.1 封包檢測----------------------------------------22 3.2 載波頻率偏移(CFO)-------------------------------------22 3.2.1 Coarse CFO-------------------------------------28 3.2.2 Fine CFO---------------------------------------29 3.2.3 Resudual CFO-----------------------------------33 3.3 通道估計----------------------------------------------34 3.4 通道等化器--------------------------------------------36 第 4 章 波束成型(Beamforming)-----------------------------38 4.1 自適應波束成型-----------------42 4.2 歸一化最小均方(Normalized Least Mean Square,NLMS)-----42 第 5 章 系統模擬圖----------------------------------------47 第 6 章 結論與未來展望------------------------------------65 參考文獻-------------------------------------------------67

    [1] “Ieee standard for telecommunications and information exchange between systems - lan/man specific requirements - part 11: Wire- less medium access control (mac) and physical layer (phy) speci- fications: High speed physical layer in the 5 ghz band,” IEEE Std 802.11a-1999, pp. 1–102, 1999.
    [2] P. Moose, “A technique for orthogonal frequency division multi- plexing frequency offset correction,” IEEE Transactions on Com- munications, vol. 42, no. 10, pp. 2908–2914, 1994.
    [3] A. Sahin, R. Yang, E. Bala, M. C. Beluri, and R. L. Olesen, “Flex- ible dft-s-ofdm: Solutions and challenges,” IEEE Communications Magazine, vol. 54, no. 11, pp. 106–112, 2016.
    [4] S. Lee, H. Kim, Y. Park, H. Lee, and J. Lee, “Downlink ofdma with dft-precoding for tera-hertz communications,” in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp.
    1–6.

    [5] G. Berardinelli, K. Pajukoski, E. Lahetkangas, R. Wichman,
    O. Tirkkonen, and P. Mogensen, “On the potential of ofdm enhance- ments as 5g waveforms,” in 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), 2014, pp. 1–5.
    [6] X. Chen, J. Cui, W. Ni, X. Wang, Y. Zhu, J. Zhang, and S. Xu, “Dft- s-ofdm: Enabling flexibility in frequency selectivity and multiuser diversity for 5g,” IEEE Consumer Electronics Magazine, vol. 9, no. 6, pp. 15–22, 2020.
    [7] “Ieee standard for information technology–telecommunications and information exchange between systems local and metropoli- tan area networks–specific requirements part 11: Wireless lan medium access control (mac) and physical layer (phy) specifica- tions amendment 1: Enhancements for high-efficiency wlan,” IEEE Std 802.11ax-2021 (Amendment to IEEE Std 802.11-2020), pp. 1– 767, 2021.
    [8] A. Sahin, E. Bala, R. Yang, and R. L. Olesen, “Dft-spread ofdm with frequency domain reference symbols,” in GLOBECOM 2017
    - 2017 IEEE Global Communications Conference, 2017, pp. 1–6.

    [9] G.-H. L. So-Young Ju and E.-R. Jeong, “A new design of sc-fde structure for jammer attack,” ASM Sc. J., 13, Special Issue 1, 2020 for ICFICE, 1-9, 2020.
    [10] C. L. Nguyen, A. Mokraoui, P. Duhamel, and N. Linh-Trung, “Time synchronization algorithm in ieee 802.11a communication system,” in 2012 Proceedings of the 20th European Signal Processing Con- ference (EUSIPCO), 2012, pp. 1628–1632.
    [11] V. Ninkovic, D. Vukobratovic, A. Valka, and D. Dumic, “Preamble- based packet detection in wi-fi: A deep learning approach,” in 2020 IEEE 92nd Vehicular Technology Conference (VTC2020- Fall), 2020, pp. 1–5.
    [12] Y. Huang, L. Yuan, and W. Gong, “Research on ieee 802.11 ofdm packet detection algorithms for household wireless sensor communication,” Applied Sciences, vol. 12, no. 14, 2022. [Online]. Available:

    [13] P. Pedrosa, R. Dinis, and F. Nunes, “Joint detection and cfo estima- tion for qam constellations,” in 2011 IEEE 73rd Vehicular Technol- ogy Conference (VTC Spring), 2011, pp. 1–5.
    [14] P. K. Nishad and P. Singh, “Carrier frequency offset estimation in ofdm systems,” in 2013 IEEE Conference on Information Commu- nication Technologies, 2013, pp. 885–889.
    [15] P. Singh, E. Sharma, K. Vasudevan, and R. Budhiraja, “Cfo and channel estimation for frequency selective mimo-fbmc/oqam sys- tems,” IEEE Wireless Communications Letters, vol. 7, no. 5, pp. 844–847, 2018.
    [16] Y. Wang and X. Dong, “Comparison of frequency offset and timing offset effects on the performance of sc-fde and ofdm over uwb chan- nels,” IEEE Transactions on Vehicular Technology, vol. 58, no. 1,
    pp. 242–250, 2009.

    [17] W. Kim and D. C. Cox, “Residual frequency offset and phase com- pensation for ofdm systems,” in 2007 IEEE 66th Vehicular Technol- ogy Conference, 2007, pp. 2209–2213.
    [18] A. Pascual-Iserte, L. M. Ventura, and X. Nieto, “Residual carrier frequency offset estimation and correction in ofdm mimo systems,” in 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 2007, pp. 1–5.
    [19] M. Marques da Silva, R. Dinis, and J. Guerreiro, “A low complexity channel estimation and detection for massive mimo using sc-fde,” Telecom, vol. 1, no. 1, pp. 3–17, 2020. [Online]. Available:

    [20] S. Hu, Z. Liu, Y. L. Guan, C. Jin, Y. Huang, and J.-M. Wu, “Train- ing sequence design for efficient channel estimation in mimo-fbmc systems,” IEEE Access, vol. 5, pp. 4747–4758, 2017.
    [21] J.-C. Lin, “Least-squares channel estimation for mobile ofdm com- munication on time-varying frequency-selective fading channels,” IEEE Transactions on Vehicular Technology, vol. 57, no. 6, pp. 3538–3550, 2008.
    [22] F. C. Vilar, “Implementation of zero forcing and mmse equalization techniques in ofdm,” 2015.
    [23] B. O. Adame, “Channel equalization linear,non linear, blind and time domain and interferance cancellation,” 05 2015.
    [24] N. A. Hussien, A. Idris, and A. L. Yusof, “Performance evaluation of interference alignment (ia) scheme in mobile wimax application using equalization algorithm,” AIP Conference Proceedings, vol. 1774, no. 1, p. 050022, 2016. [Online]. Available:

    [25] M. Nemade, A. Ganage, and M. Mali, “Analysis of lms and nlms adaptive beamforming algorithms,” International Journal of Engi- neering Research & Technology (IJERT), vol. 3, pp. 852–856, 2014.
    [26] A. Hakam, R. Shubair, S. Jimaa, and E. Salahat, “Robust inter- ference suppression using a new lms-based adaptive beamforming algorithm,” in MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference, 2014, pp. 45–48.
    [27] B. Krishna and G. Yadav, “Performance comparison of different variable filters for noise cancellation in real-time environment,” In- ternational Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 9, pp. 107–126, 02 2016.

    QR CODE
    :::