跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃罡
Gang Huang
論文名稱: 甲醇蒸氣重組觸媒之設計-CuO/ZnO/CeO2/ZrO2/Al2O3
指導教授: 陳吟足
Yin-Zu Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 107
中文關鍵詞: 氧化鋯銅觸媒氧化鈰甲醇蒸氣重組
外文關鍵詞: ZrO2, CeO2, Copper catalyst, Hydrogen production, Methanol steam reforming
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 燃料電池中氫氣來源主要是由液態碳氫化合物的重組轉換,其中以甲醇蒸氣重組反應即時產生氫氣,系統最簡單,適合移動式供氫,為目前最具潛力的產氫反應。甲醇蒸氣重組觸媒成分以CuO/ZnO/Al2O3為主,為了增加觸媒的活性與穩定性,有不少研究者引入CeO2、ZrO2,並對CeO2與ZrO2的優點做了很多的闡述,但是觸媒成分比例討論範圍偏狹,不具實用性。
    本研究以商用觸媒G66B (CuO/ZnO/Al2O3 = 30/60/10)為參考成分,進行調變,以共沉澱法製備不同比例CuO/ZnO/CeO2/ZrO2/Al2O3觸媒,進行甲醇蒸氣重組反應,以期設計出最佳觸媒。
    首先將商用比例觸媒中ZnO的一半30 wt%以不同比例CeO2/ZrO2取代,發現CeO2與ZrO2皆可以增加觸媒的分散性以及還原能力,可是CeO2的添加會使Al遷移至觸媒近表層,產生負面影響,而ZrO2的添加確實有促進效果。改變觸媒ZnO/ZrO2比例,發現以10~20 wt% ZrO2取代ZnO有最佳效果。改變觸媒基本成分CuO/ZnO/Al2O3中ZnO/Al2O3的比例,觸媒活性隨Al2O3增加而驟降,Al2O3雖然是負面影響,但仍扮演穩定觸媒、增加觸媒機械強度的角色,宜適量添加,如G66B之成分,10 wt%即可。CuO的負載量以CuO/ZnO/Al2O3(50/40/10)、CuO/ZnO/Al2O3(40/50/10)觸媒活性最佳,但Cu分散性差,且穩定測試中活性隨時間持續衰退。為了增加觸媒分散性與穩定性,分別以10~20 wt% ZrO2取代ZnO,製得活性、穩定性最佳觸媒為CuO/ZnO/ZrO2/Al2O3(40/30/20/10)。


    On-board generation of hydrogen by methanol steam reforming is being used in the development of fuel-cell engines for various transportation applications. In the past the reaction was studied over CuO/ZnO/Al2O3-based catalyst. Previous studies have reported that CeO2 and ZrO2 both enhanced the reducibility of CuO, the Cu dispersion and the amount of Cu+, and those causes have been cited as a possible reason for the activity and stability promotion of catalyst. Although the advantages of CeO2 and ZrO2 have gone into details, their catalyst composition is limited.
    Our researchers varied commercial catalyst G66B composition (CuO/ZnO/Al2O3 = 30/60/10), and introduced CeO2 and ZrO2 simultaneously. In the methanol steam reforming, CeO2 inhibited the activity of catalyst because of the movement of Al atom. ZrO2 certainly enhanced the performance of catalysts, and 10~20 wt% ZrO2 was most effective for catalyst. Al2O3 which played the role of texture promoter inhibited the activity of catalyst seriously, need adding moderately. Varying the ratio of Cu/Zn, CuO/ZnO/Al2O3 (50/40/10) and CuO/ZnO/Al2O3 (40/50/10) showed better activity, but their stability was bad. In order to enhance the performance of catalyst, we introduced 10~20 wt% ZrO2, and produced the best catalyst CuO/ZnO/ZrO2/Al2O3 (40/30/20/10).

    目 錄 摘 要…………………………………………………………....................... i Abstract…………………………………………………………...…………. ii 誌 謝…………………………………………………………....................... iii 目 錄…………………………………………………………...…................ iv 圖 目 錄…………………………………………………………...…............ vi 表 目 錄…………………………………………………………...…............ ix 第一章 緒 論…………………………………………………………......... 1 第二章 文獻回顧………………………………………………………........ 2 2-1 甲醇產氫反應……………………………………………………. 2 2-2 甲醇蒸汽重組的反應路徑…………………………………......... 3 2-3 甲醇蒸汽重組反應機構…………………………………………. 6 2-4 引入ZrO2對反應的影響………………………………………… 11 2-4-1 引入ZrO2對反應活性的影響…………………………………… 11 2-4-2 引入ZrO2對觸媒穩定性的影響………………………………… 14 2-4-3 引入ZrO2對觸媒實用性的影響………………………………… 15 2-5 引入CeO2對反應的影響………………………………………… 15 2-5-1 CeO2的特性…………………………………………………........ 15 2-5-2 引入CeO2對反應活性的影響…………………………………… 17 2-5-3 引入CeO2對CO濃度的影響……………………………………... 19 2-5-4 引入CeO2對觸媒穩定性的影響………………………………… 20 2-6 Cu-Mn尖晶石結構觸媒………………………………..………... 20 第三章 實驗方法與設備………………………………………………........ 22 3-1 CuO/ZnO/CeO2/ZrO2/Al2O3觸媒之製備………………………... 22 3-2 觸媒性質鑑定……………………………….. ………………….. 24 3-2-1 元素組成分析(ICP)………………………………..……….......... 24 3-2-2 比表面積測定(BET)……………………………………………... 24 3-2-3 X-射線繞射分析(XRD)………………………………..……….... 25 3-2-4 X-射線光電子光譜(XPS)………………………………..………. 26 3-2-5 氫-程溫還原(H2-TPR)…………………………………………… 27 3-2-6 銅表面積測量TPR法…………………………………………… 27 3-3 甲醇蒸氣重組反應活性測試……………………………………. 30 3-4 轉化率與選擇率之計算…………………………………………. 33 3-5 實驗藥品及氣體…………………………………………………. 33 第四章 結果與討論……………………………………………………........ 35 4-1 觸媒基本性質鑑定………………………………………………. 35 4-2 觸媒活性測試與探討……………………………………………. 38 4-2-1 引入不同比例CeO2/ZrO2對觸媒的影響……………………….. 38 4-2-2 不同ZnO/ZrO2比例對觸媒的影響……………………………… 51 4-2-3 不同ZnO/Al2O3比例對觸媒的影響…………………………….. 59 4-2-4 不同CuO/ZnO比例對觸媒的影響……………………………… 70 4-2-5 引入ZrO2對CuO/ZnO/Al2O3(40/50/10)觸媒的影響…………… 80 4-2-6 自製觸媒與商用觸媒的比較……………………………………. 86 4-3 觸媒穩定性測試…………………………………………………. 91 第五章 結 論…………………………………………………………......... 99 總結…………………………………………………………………………... 101 參考文獻……………………………………………………………………... 102 圖目錄 圖2-1 改變CO2成分比對轉化率的影響………………………………. 4 圖2-2 改變CO2成分比對CO濃度的影響…………………………….. 5 圖2-3 改變接觸時間對CO與CO2選擇率的影響…………………….. 5 圖2-4 Cu/ZnO/Al2O3觸媒經過甲醇蒸汽重組反應後的FTIR圖譜….. 8 圖2-5 甲醇蒸汽重組反應機制圖…………………………………........ 9 圖2-6 新鮮觸媒與再氧化觸媒的TPR圖譜…………………………… 13 圖2-7 CuO/ZrO2觸媒的XRD圖譜……………………………………. 14 圖2-8 CeO2的晶體結構………………………………………………… 16 圖2-9 CeO2的剖面層結構……………………………………………… 16 圖2-10 CuO/CeO2之結構示意圖………………………………………... 17 圖2-11 Cu/CeO2/Al2O3的Cu粒徑分布…………………………………. 19 圖2-12 Cu-Mn觸媒的TPR/TPO循環實驗…………………………….. 21 圖3-1 觸媒製備裝置………………………………………………........ 23 圖3-2 氫-程溫還原與銅表面積測量裝置圖…………………………... 29 圖3-3 甲醇蒸氣重組反應裝置圖…………………………………........ 31 圖4-1 不同CeO2/ZrO2比例對CuO/ZnO/CeO2/ZrO2/Al2O3觸媒活性的影響……………………………………………………................ 40 圖4-2 CeO2/ZrO2比例對甲醇轉化率與CO選擇率之影響…………… 42 圖4-3 不同CeO2/ZrO2比例之觸媒XRD圖譜………………………… 44 圖4-4 不同CeO2/ZrO2比例之觸媒TPR圖譜…………………………. 45 圖4-5 不同CeO2/ZrO2比例之觸媒Cu 2p3/2 XPS圖譜………………… 47 圖4-6 不同CeO2/ZrO2比例之觸媒Auger CuKLL電子動能圖……….. 48 圖4-7 不同ZnO/ZrO2比例對CuO/ZnO/ZrO2/Al2O3觸媒活性的影響…………………………………………………….................... 52 圖4-8 ZrO2含量對甲醇轉化率與CO選擇率之影響………………….. 54 圖4-9 不同ZnO/ZrO2比例之觸媒XRD圖譜…………………………. 55 圖4-10 不同ZnO/ZrO2比例之觸媒TPR圖譜………………………….. 57 圖4-11 不同ZnO/Al2O3比例對CuO/ZnO/Al2O3觸媒活性的影響…….. 60 圖4-12 Al2O3含量對甲醇轉化率與CO選擇率之影響………………… 62 圖4-13 不同ZnO/Al2O3比例之觸媒XRD圖譜………………………… 63 圖4-14 不同ZnO/Al2O3比例之觸媒TPR圖譜…………………………. 65 圖4-15 不同ZnO/Al2O3比例之觸媒Cu 2p3/2 XPS圖譜….…………….. 66 圖4-16 不同ZnO/Al2O3比例之觸媒Auger CuKLL電子動能圖………. 67 圖4-17 不同CuO/ZnO比例對CuO/ZnO/Al2O3觸媒活性的影響……… 71 圖4-18 CuO負載量對甲醇轉化率與CO選擇率之影響……………….. 73 圖4-19 不同CuO/ZnO比例之觸媒XRD圖譜………………………….. 75 圖4-20 不同CuO/ZnO比例之觸媒TPR圖譜………………………….. 76 圖4-21 不同CuO/ZnO比例之觸媒Cu 2p3/2 XPS圖譜…………………. 77 圖4-22 不同CuO/ZnO比例之觸媒Auger CuKLL電子動能圖譜……... 78 圖4-23 引入ZrO2之CuO/ZnO/Al2O3(40/50/10)觸媒反應活性測試........ 82 圖4-24 引入ZrO2之CuO/ZnO/Al2O3(40/50/10)觸媒XRD圖譜……… 84 圖4-25 引入ZrO2之CuO/ZnO/Al2O3(40/50/10)觸媒TPR圖譜………... 85 圖4-26 自製觸媒與商用觸媒之甲醇蒸氣重組反應活性測試……........ 87 圖4-27 自製觸媒與商用觸媒之XRD圖譜……………………………... 89 圖4-28 自製觸媒與商用觸媒之TPR圖譜…………………………........ 90 圖4-29 CuO/ZnO/Al2O3(50/40/10)觸媒之110小時穩定測試………….. 93 圖4-30 CuO/ZnO/Al2O3(40/50/10)觸媒之110小時穩定測試………….. 94 圖4-31 CuO/ZnO/ZrO2/Al2O3(40/30/20/10)觸媒之110小時穩定測試……………………………………………………………........ 95 圖4-32 商用觸媒G66B之110小時穩定測試…………………………... 96 圖4-33 CuO/ZnO/Al2O3(40/50/10)與商用觸媒G66B之穩定性比較….. 97 圖4-34 CuO/ZnO/ZrO2/Al2O3(40/30/20/10)與商用觸媒G66B之穩定性比較……………………………………………………………… 98 表目錄 表2-1 Cu/ZnO/Al2O3甲醇合成反應中表面的吸附物質…………........ 10 表2-2 Cu/CeO2觸媒與各種銅觸媒的活性與選擇率比較…………….. 18 表2-3 Cu/ZnO/CeO2/Al2O3系列觸媒的活性與選擇率………………... 20 表3-1 氣相層析儀分析條件………………………………………........ 32 表4-1 觸媒鑑定項目………………………………………………........ 36 表4-2 CuO/ZnO/CeO2/ZrO2/Al2O3觸媒整體組成……………………... 37 表4-3 CuO/ZnO/CeO2/ZrO2/Al2O3觸媒物理表面積…………………... 37 表4-4 觸媒不同CeO2/ZrO2之調變比例……………………………….. 38 表4-5 不同CeO2/ZrO2比例觸媒之甲醇轉化率以及CO選擇率……... 41 表4-6 不同CeO2/ZrO2比例觸媒之表面銅物種百分比……………….. 49 表4-7 不同CeO2/ZrO2比例觸媒之XPS近表層原子組成…………….. 49 表4-8 不同CeO2/ZrO2比例觸媒之銅分散度與Cu表面積…………… 50 表4-9 觸媒不同ZnO/ZrO2之調變比例………………………………... 51 表4-10 不同ZnO/ZrO2比例觸媒之甲醇轉化率以及CO選擇率………. 53 表4-11 不同ZnO/ZrO2比例觸媒之XPS近表層原子組成……………... 58 表4-12 不同ZnO/ZrO2比例觸媒之銅分散度與Cu表面積……………. 58 表4-13 觸媒不同ZnO/Al2O3之調變比例……………………………….. 59 表4-14 不同ZnO/Al2O3比例觸媒之甲醇轉化率以及CO選擇率……... 61 表4-15 不同ZnO/Al2O3比例觸媒之表面銅物種百分比……………….. 68 表4-16 不同ZnO/Al2O3比例觸媒之XPS近表層原子組成……………. 68 表4-17 不同ZnO/Al2O3比例觸媒之銅分散度與Cu表面積…………… 69 表4-18 觸媒不同CuO/ZnO之調變比例………………………………... 70 表4-19 不同CuO/ZnO比例觸媒之轉化率以及CO選擇率……………. 72 表4-20 不同CuO/ZnO比例觸媒之表面銅物種百分比………………... 79 表4-21 不同CuO/ZnO比例觸媒之XPS近表層原子組成…………….. 79 表4-22 不同CuO/ZnO比例觸媒之銅分散度與Cu表面積……………. 80 表4-23 CuO/ZnO/Al2O3(40/50/10)觸媒引入ZrO2之調變比例……........ 80 表4-24 引入ZrO2之CuO/ZnO/Al2O3(40/50/10)觸媒甲醇轉化率以及CO選擇率……………………………………………………….. 83 表4-25 引入ZrO2之CuO/ZnO/Al2O3(40/50/10)觸媒銅分散度與Cu表面積………………………………………………………............ 86 表4-26 自製觸媒與商用觸媒的比較………………………………........ 86 表4-27 自製觸媒與商用觸媒之甲醇轉化率以及CO選擇率………….. 88 表4-28 自製觸媒與商用觸媒之銅分散度與Cu表面積………………... 91 表4-29 參與穩定性測試之觸媒成分………………………………........ 92

    參考文獻
    [1] Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii, M. Kumagai, “Highly active copper/ceria catalysts for steam reforming of methanol”, Appl. Catal. A: Gen. 223 (2002) 137-145.
    [2] S. Patel, K.K. Pant, “Selective production of hydrogen via oxidative steam reforming of methanol using Cu–Zn–Ce–Al oxide catalysts”, Chem. Eng. Sci. 62 (2007) 5436-5443.
    [3] M. Fernández-García, E. Gómez Rebollo, A. Guerrero Ruiz, J.C. Conesa, J. Soria, “Influence of ceria on the dispersion and reduction/oxidation behaviour of alumina-supported copper catalysts”, J. Catal. 172 (1997) 146-159.
    [4] J. Agrell, H. Birgersson, M. Boutonnet, I. Melián-Cabrera, R.M. Navarro, J.L.G. Fierro, “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, J. Catal. 219 (2003) 389-403.
    [5] S. Velu, K. Suzuki, M. Okazaki, M.P. Kapoor, T. Osaki, F. Ohashi, “Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of htdrogen for feul cells: catalyst characterization and performance evaluation”, J. Catal. 194 (2000) 373-384.
    [6] X.R. Zhang, P. Shi, J. Zhao, M. Zhao, C. Liu, “Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts”, Fuels Furn. 83 (2003) 183-192.
    [7] A. Mastalir, B. Frank, A. Szizybalski, H. Soerijanto, A. Deshpande, M. Niederberger, R. Schomacker, R. Schlogl, T. Ressler, “Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts: a kinetic study”, J. Catal. 230 (2005) 464-475.
    [8] S. Velu, K. Suzuki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance”, Topics in Catalysis 22 (2003) 235-244.
    [9] D. Bianchi, T. Chafik, M. Khalfallah, S.J. Teichner, “Intermediate species on zirconia supported methanol aerogel catalysts V. Adsorption of methanol”, Appl. Catal. A: Gen. 123 (1995) 89-110.
    [10] G. Fierro, M.L. Jacono, M. Inversi, P. Porta, F. Cioci, R. Lavecchia, “Study of the reducibility of copper in CuO---ZnO catalysts by temperature-programmed reduction”, Appl. Catal. A: Gen. 137 (1996) 327-348.
    [11] M. Bowker, R.A. Hadden, H. Houghton, J.N.K. Hyland, K.C. Waugh, “The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts” J. Catal. 109 (1988) 263-273.
    [12] T. Fujitani, J. Nakamura, “The chemical modification seen in the Cu/ZnO methanol synthesis catalysts”, Appl. Catal. A: Gen. 191 (2000) 111-129.
    [13] M.M. Günter, T. Ressler, R.E. Jentoft, B. Bems, “Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy”, J. Catal. 203 (2001) 133-149.
    [14] S. Fukahori, H. Koga, T. Kitaoka, A. Tomoda, R. Suzuki, H. Wariishi, “Hydrogen production from methanol using a SiC fiber-containing paper composite impregnated with Cu/ZnO catalyst”, Appl. Catal. A: Gen. 310 (2006) 138-144.
    [15] A.P. Meyer, J.A.S. Bett, G. Vartanian, R.A. Sederquist, “Parametric analysis of 1.5 kW methanol-fuel cell power plant designs”, US Army Technical Report DAAK70-77-C-0195, 1978.
    [16] E. Santacesaria, S. Carrá, “Cinetica dello steam reforming del metanolo”, Riv. Combust. 32 (1978) 227-232.
    [17] J.C. Amphlett, M.J. Evans, R.F. Mann, R.D. Weir, “Hydrogen production by the catalytic steam reforming of methanol. Part 2: Kinetics of methanol decomposition using Girdler G66B catalyst”, Can. J. Chem. 63 (1985) 605-611.
    [18] J.C. Amphlett, M.J. Evans, R.F. Mann, R.D. Weir, “Hydrogen production by the catalytic steam reforming of methanol. Part 3: Kinetics of methanol decomposition using Girdler C18HC catalyst”, Can. J. Chem. 66 (1988) 950-956.
    [19] R. Dümpelmann, “Kinetische Untersuchungen des Methanol reforming und der Wassergaskonvertierungsreaktion in einem konsentrationgeregelten Kreislaufreaktor”, Ph.D. Dissertation, Eidgenössischen Technischen Hochschule, Zürich, 1992.
    [20] C.J. Jiang, D.L. Trimm, M.S. Wainwright, N.W. Cant, “Kinetic study of steam reforming of methanol of copper-based catalysts”, Appl. Catal. A: Gen. 93 (1993) 245-255.
    [21] J.C. Amphlett, R.F. Mann, B.A. Peppley, “The steam-reforming of methanol: mechanism and kinetics compared to the methanol synthesis process”, in: H.E. Curry-Hyde, R.F. Howe (Eds.), Studies in Surface Science and Catalysis, vol. 81, Elsevier, Amsterdam, 1994, pp. 409-412, ISBN 0-444-89535-3.
    [22] G. Liu, D. Willcox, M. Garland, and H. H. Kung, “The role of CO2 in methanol synthesis on Cu-Zn oxide: An isotope labeling study”, J. Catal. 96 (1985) 251-260.
    [23] G.C. Chinchen, P.J. Denny, D.G. Parker, M.S. Spencer, and D.A. Whan, “Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: Use of 14C-labelled reactions”, Appl. Catal. 30 (1987) 333.
    [24] N.E. Vanderborgh, B.E. Goodby, T.E. Springer, “Oxygen exchange reactions during methanol steam reforming”, in: Proceedings of the 32nd International Power Sources Symposium, 1986, pp. 623-628.
    [25] K.C. Waugh, “Methanol synthesis”, Catalysis Today 15 (1992) 51-75.
    [26] B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, “Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network”, Appl. Catal. A: Gen. 179 (1999) 21-29.
    [27] J.K. Lee, J.B. Ko, D.H. Kim, “Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor”, Appl. Catal. A: Gen. 278 (2004) 25-35.
    [28] H. Purnama, T. Ressler, R.E. Jentoft, H. Soerijanto, R. Schlögl, R. Schomäcker, “CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst”, Appl. Catal. A: Gen. 259 (2004) 83-94.
    [29] S.G. Neophytides, A.J. Marchi, G.F. Froment, “Methanol synthesis by means of diffuse reflectance infrared Fourier transform and temperature-programmed reaction spectroscopy”, Appl. Catal. A: 86 (1992) 45-64.
    [30] G.J. Millar, C.H. Rochester, K.C. Waugh, “Infrared study of methyl formate and formaldehyde adsorption on reduced and oxidised silica-supported copper catalysts”, J. Chem. Soc., Faraday Trans. 87(17) (1991) 2785-2793.
    [31] I.E. Wachs, R.J. Madix, “The selective oxidation of CH3OH to H2CO on a copper(110) catalyst”, J. Catal. 53 (1978) 208-227.
    [32] G.J. Millar, C.H. Rochester, K.C. Waugh, “Infrared study of the adsorption of methanol on oxidised and reduced Cu/SiO2 catalysts”, J. Chem. Soc., Faraday Trans. 87(17) (1991) 2795-2804.
    [33] K.M. Minachev, K.P. Kotyaev, G.I. Lin, A.Y. Rozovskii, “Temperature-programmed surface reactions of methanol on commercial Cu-containing catalysts”, Catalysis Letters 3 (1989) 299-307.
    [34] B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, “Methanol steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model”, Appl. Catal. A: Gen. 179 (1999) 31-49.
    [35] B. Frank, F.C. Jentoft, H. Soerijanto, J. Kröhnert, R. Schlögl, R. Schomäcker, “Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics”, J. Catal. 246 (2007) 177-192.
    [36] J. Skrzypek, J. Sloczynski, S. Ledakowicz, “Methanol synthesis”, ISBN 83-01-11490-8, Polish Scientific Publishers, Warsaw, 1994.
    [37] J. Nakamura, I. Nakamura, T. Uchijima, Y. Kanai, T. Watanabe, M. Saito, T. Fujitani, “A surface science investigation of methanol synthesis over a Zn-deposited polycrystalline Cu surface”, J. Catal. 160 (1996) 65-75.
    [38] R.O. Idem, N.N. Bakhshi, Ind. Eng. Chem. Res. 33 (1994) 2056.
    [39] T. Fujitani, M. Saito, Y. Kanai, T. Kakumoto, T. Watanabe, “The role of metal oxides in promoting a copper catalyst for methanol synthesis”, Catalysis Lettters 25 (1994) 271-276.
    [40] H. Oguchi, H. Kanai, K. Utani, Y. Matsumura, S. Imamura, “Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts”, Appl. Catal. A: Gen. 293 (2005) 64-70.
    [41] H. Oguchi, T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, S. Imamura, “Steam reforming of methanol over Cu/CeO2/ ZrO2 catalysts”, Appl. Catal. A: Gen. 281 (2005) 69-73.
    [42] P.H. Matter, D.J. Braden, U.S. Ozkan, “Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts”, J. Catal. 223 (2004) 340-351.
    [43] S. Velu, K. Suzuki, M.P. Kapoor, F. Ohashi, T. Osaki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts”, Appl. Catal. A: Gen. 213 (2001) 47-63.
    [44] S. Patel, K.K. Pant, “Influence of preparation method on performance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol”, J Porous Mater (2006) 13: 373-378.
    [45] Y. Okamoto, K. Fukino, T. Imanaka, S. Teranishi, J. Phys. Chem. 87 (1983) 3740.
    [46] K.T. Jung, A.T. Bell, “Effects of zirconia phase on the synthesis of methanol over zirconia-supported copper”, Catalysis Letters 80 (2002) 63-68.
    [47] D. Bianchi, T. Chafik, M. Khalfallah, S.J. Teichner, “Intermediate species on zirconia supported methanol aerogel catalysts: IV. Adsorption of carbon dioxide”, Appl. Catal. A: Gen. 112 (1994) 219-235.
    [48] P.H. Matter, U.S. Ozkan, “Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2”, J. Catal. 234 (2005) 463-475.
    [49] M. Pijolat, M. Prin, M. Soustelle, “Thermal stability of doped ceria: experiment and modeling”, J. Chem. Soc., Faraday Trans. 91 (1995) 3941-3948.
    [50] P. Fornasiero, G. Balducci, R.D. Monte, J. Kaspar, V. Sergo, G. Gubitosa, A. Ferrero, M. Graziani, “Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2”, J. Catal. 164 (1996) 173-183.
    [51] W. Liu, M. Flytzani-Stephanopoulos, “Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I. Catalyst composition and activity”, J. Catal. 153 (1995) 304-316.
    [52] W. Liu, M. Flytzani-Stephanopoulos, “Total oxidation of carbon-monoxide and methane over transition metal fluorite oxide composite catalysts: II. Catalyst characterization and reaction-kinetics”, J. Catal. 153 (1995) 317-332.
    [53] 黃振瑋,「CuO/Ce1-xSnxO2觸媒於富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國94年。
    [54] 張煒謙,「CuO/Ce1-xZrxO2觸媒於富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國95年。
    [55] 王榕蔓,「CuO/Ce1-xSnxO2-Al2O3觸媒於富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國96年。
    [56] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “Combined steam reforming of methanol over Cu–Mn spinel oxide catalysts”, J. Catal. 251 (2007) 7-20.
    [57] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “In situ combustion synthesis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production and purification of hydrogen”, Appl. Catal. B: Env. 66 (2006) 168-174.
    [58] J.B. Friedrich, M.S. Wainwright, D.J. Young, “Methanol synthesis over Raney copper-zinc catalysts : I. Activities and surface properties of fully extracted catalysts”, J. Catal. 80 (1983) 1-13.
    [59] J.B. Friedrich, M.S. Wainwright, D.J. Young, “Methanol synthesis over Raney copper-zinc catalysts : II. Activities and surface properties of a partially leached alloy”, J. Catal. 80 (1983) 14-24.
    [60] B. Dvorak, J. Pasek, “Determination of the specific copper surface area by chromatographic technique”, J. Catal. 18 (1970) 108-114.
    [61] J.W. Evans, M.S. Wainwright, A.J. Bridgewater, D.J. Young, Appl. Catal. 7 (1983) 75.
    [62] E. Giamello, B. Fubini, P. Lauro, A. Bossi, “A microcalorimetric method for the evaluation of copper surface area in Cu---ZnO catalyst” J. Catal. 87 (1984) 443-451.
    [63] G.C. Chinchen, C.M. Hay, H.D. Vandervell, K.C. Waugh, “The measurement of copper surface areas by reactive frontal chromatography”, J. Catal. 103 (1987) 79-86.

    QR CODE
    :::