| 研究生: |
王勝聰 Hseng-Tsong Wang |
|---|---|
| 論文名稱: |
漸變波導結構寬頻分光器之研究 Study of broadband splitter based on weighted structure waveguides |
| 指導教授: | 陳奇夆 |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 絕熱式方向耦合器 、布雷克曼函數 、耦合器 、耦合 、模態演化 、分光器 、不同分光比分光器 、波導 、權重函數 |
| 外文關鍵詞: | Adiabatic directional coupler, Blackman function, Coupler, Coupling, Mode evolution, Splitter, Variable splitting ratio splitter, Waveguide, Weighting function |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一種由Blackman函數所調變的對稱性漸變波導結構之3-dB分光器,應用在工作波長C+L波段的被動光纖網路裡。此寬頻分光器是使用耦合模理論來進行分析,並且利用三維有限差分波束傳播方法進行模擬。模擬結果發現,在整個C+L波段中,所提出的3-dB分光器的光均勻度,波長相依損失,額外損失和極化相依損失分別都優於2.49E-3 dB、0.018 dB、0.14 dB和0.004 dB。很明顯地,在工作波長C+L波段的被動光纖網路應用裡,此3-dB分光器可以展現良好的性能。
隨後,我們延伸了上述3-dB分光器的研究,藉由簡單地打破原始設計的對稱性,來獲得不同分光比例的輸出。此不同分光比例的寬頻分光器之數值解決方案是設計波長在1.53~1.57 μm區間。我們一樣是使用BPM來驗證所提出的不同分光比例分光器的性能。經由模擬結果,我們推導出幾何移位與所對應的分光比例的關係,是一個二階多項式的關係。另外,透過這種幾何位移,分光比例可以從50:50調變到90:10。波長在1.53~1.57 μm區間,此不同分光比例分光器的額外損失,串擾值,極化相依損失和波長相依之分光比的偏差值分別都優於0.139 dB、-22.75 dB、0.006 dB和0.335%。明顯可見地,我們所提出的不同分光比例分光器一樣都保留了與對稱設計相同的優點,例如低額外損失,低串擾值,對光極化方向不敏感與對光波長不敏感。
In this thesis, we propose a coupling-weighted and velocity-tapered 3-dB splitter with a symmetric structure weighted by the Blackman function for C+L-band passive optical network (PON) applications. The broadband splitter is analyzed by the coupled-mode theory and simulated by the use of three-dimensional finite-difference beam propagation method (BPM). It is found that the power uniformity, wavelength dependent loss, excess loss and polarization dependent loss of the proposed 3-dB splitter in the whole C+L-band are better than 2.49E-3 dB, 0.018 dB, 0.14 dB, and 0.004 dB, respectively. It is evident that the 3-dB splitter can achieve the good performances for C+L-band passive optical network applications.
Furthermore, we extend the approach of the above 3-dB splitter to obtain variable splitting ratios by simply breaking the symmetry of the original design. A numerical solution for the broadband splitter with a variable splitting ratio is designed with wavelengths between 1.53 and 1.57 µm. The performance of the proposed splitter is also verified by using the BPM. It was found that a polynomial function of the splitting ratios accompanying a geometrical shift can be derived from the proposed splitter. The splitting ratio can be changed from 50:50 to 90:10 with this geometrical shift. The excess loss, crosstalk, polarization dependent loss, and splitting ratio variations against wavelength of the proposed splitter with wavelengths between 1.53 and 1.57 µm are better than 0.139 dB, −22.75 dB, 0.006 dB, and 0.335%, respectively. Obviously, the proposed splitter with variable splitting ratio retains the advantages of the symmetric design, such as low excess loss, low crosstalk, polarization insensitivity, and wavelength insensitivity.
[1] 陳思宏. (民國96年). FTTH光纖網路建置於不同類型建築物-新施工技術之研究與設計. 國立台北科技大學電子電腦與通訊產業研發碩士論文.
[2] P. W. Shumate. (2008). Fiber-to-the-Home: 1977-2007. J. Lightwave Technol., Vol. 26, pp. 1093-1103.
[3] Intelligent Living Space wabside :
http://ils.org.tw/intelligent/ 江昭佑. (2013) 光纖到家(FTTH:Fiber To The Home)技術簡介.
[4] H. Sasaki and N. Mikoshiba. (1981). Normalized power transmission in single mode optical branching waveguides. Electron. Lett., Vol. 17, pp. 136-138.
[5] Y. Shani, C.H. Henry, R.C. Kistler, R.F. Kazarinov, and K.J. Orlowsky. (1991). Integrated optic adiabatic devices on silicon. IEEE J. Quantum Electron., Vol. 27, pp. 556-566.
[6] R. Adar, C.H. Henry, R.F. Kazarinov, R.C. Kistler, and G.R. Weber. (1992). Adiabatic 3-dB couplers, filters, and multiplexers made with silica waveguides on silicon. J. Lightwave Technol., Vol. 10, pp. 46-50.
[7] Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi. (2007). Low-loss Y-branch waveguides designed by wavefront matching method and their application to a compact 1×32 splitter. Electron. Lett., Vol. 43, pp. 217-218.
[8] Z. Huang, H. P. Chan, and M. A. Uddin. (2010). Low-loss ultracompact optical power splitter. Appl. Opt., Vol. 49, pp. 1900-1907.
[9] L. B. Soldano and E. C. M. Pennings. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. J. Lightwave Technol., Vol. 13, pp. 615-627.
[10] Y. Zhang, L. Liu, X. Wu, and L. Xu. (2008). Splitting-on-demand optical power splitters using multimode interference (MMI) waveguide with programmed modulations. Opt. Commun., Vol. 281, pp. 426-432.
[11] P. P. Sahu. (2009). Parabolic tapered structure for an ultracompact multimode interference coupler. Appl. Opt., Vol. 48, pp. 206-211.
[12] R. B. Smith. (1976). Analytical solutions for linearly tapered directional couplers. J. Opt. Soc. Amer., Vol. 66, pp. 882-892.
[13] K. A. McGreer, H. Xu, C. Ho, N. Kheraj, Q. Zhu, M. Stiller, and J. Lam. (2006, Mar.). Planar Lightwave Circuits for PON Applications. Opt. Fiber Conf. (OFC2006), Paper NWD4.
[14] L. Zhang, L. Wang, and J. J. He. (2009). Monolithically integrated fiber-to-the-home diplexers and triplexers using a bilevel etched 2×2 optical coupler. Appl. Opt., Vol. 48, pp. F44-F48.
[15] X. J. Chen, Y. Xu, S. Lan, Q. Guo, X. Yang, and L. J. Wu. (2008). Power splitters based on the light-intensity-dependent superprism effect. Appl. Opt., Vol. 47, pp. 4701-4706.
[16] P. Nath, P. Datta, G. Jose, and K. Ch. Sarma. (2008). Lightwave splitting in two dimensional photonic crystal analogue of coupler. Opt. Commun., Vol. 281, pp. 4784-4787.
[17] E. Paspalakis. (2006). Adiabatic three-waveguide directional coupler. Opt. Commun., Vol. 258, pp. 30-34.
[18] A. Salandrino, K. Makris, D. N. Christodoulides, Y. Lahini, Y. Silberberg, and R. Morandotti. (2009). Analysis of a three-core adiabatic directional coupler. Opt. Commun., Vol. 282, pp. 4524-4526.
[19] S. Y. Tseng and Y. W. Jhang. (2013). Fast and robust beam coupling in a three waveguide directional coupler. IEEE Photon. Technol. Lett., Vol. 25, pp. 2478-2481.
[20] S. Y. Tseng, R. D. Wen, Y. F. Chiu, and X. Chen. (2014). Short and robust directional couplers designed by shortcuts to adiabaticity. Opt. Express, Vol. 22, pp. 18849-18859.
[21] S. Y. Tseng. (2014). Robust coupled-waveguide devices using shortcuts to adiabaticity. Opt. Lett., Vol. 39, pp. 6600-6603.
[22] A. Syahriar, V. M. Schenider, and S. Al-Bader. (1998). The design of mode evolution couplers. J. Lightwave Technol., Vol. 16, pp. 1907-1914.
[23] C. F. Chen, Y. S. Ku, and T. T. Kung. (2007). Optimal design of coupling waveguide structure for adiabatic optical directional full couplers weighted by sin-square and raised-cosine functions. Opt. Commun., Vol. 280, pp. 79-86.
[24] Y. S. Ku, C. F. Chen, C. N. Shauo, and H. J. Shy. (2010). Short-length and broadband mismatched optical couplers with tapered Hamming function for C- and L-band. Optik., Vol. 121, pp. 831-838.
[25] C. F. Chen, Y. S. Ku, and T. T. Kung. (2009). Design of short length and C+L-band mismatched optical coupler with waveguide weighted by the Blackman function. Opt. Commun., Vol. 282, pp. 208-213.
[26] C. F. Chen. (2010). New weighting function designed for low-crosstalk, small length mismatched optical coupler, Jpn. J. Appl. Phys., Vol. 49, pp. 032501-1-032501-6.
[27] V. M. Schneider and H. T. Hattori. (2000). High-tolerance power splitting in symmetric triple-mode evolution couplers. IEEE J. Quantum Electron., Vol. 36, pp. 923–930.
[28] W. H. Louisell. (1955). Analysis of the single tapered mode coupler. Bell. Syst. Tech. J., Vol. 34, pp. 853-870.
[29] A. G. Fox. (1955). Wave coupling by warped normal modes. Bell Syst. Tech. J., Vol. 34, pp. 823-852.
[30] J. S. Cook. (1955). Tapered velocity coupler. Bell Syst. Tech. J., Vol. 34, pp. 807-822.
[31] R. C. Alferness and P. S. Cross. (1978). Filter characteristics of codirectionally coupled waveguides with weighted coupling. IEEE J. Quantum Electron., Vol. 14, pp. 843-847.
[32] R. C. Alferness. (1979). Optical directional couplers with weighted coupling. Appl. Phys. Lett., Vol. 35, pp. 260-262.
[33] D. R. Rowland, Y. Chen, and A.W. Snyder. (1991). Tapered mismatched couplers. J. Lightwave Technol., Vol. 9, pp. 567-570.
[34] G. H. Song and W. J. Tomlinson. (1992). Fourier analysis and synthesis of adiabatic tapers in integrated optics. J. Opt. Soc. Amer. A., Vol. 9, pp. 1289-1300.
[35] H. Nishihara, M. Haruna, and T. Suhara. (1989). Optical Integrated Circuits. McGraw-Hill; New York.
[36] W. P. Huang and C. L. Xu. (1993). Simulation of three-dimensional optical waveguides by a full-vector beam propagation method. IEEE J. Quantum Electron., Vol. 29, pp. 2639-2649.
[37] M. Moooka and U. Teruaki. (2009). Temperature-independent silicon waveguide optical filter. Opt. Lett., Vol. 34, pp. 599-601.
[38] S.Y. Tseng, C. Fuentes-Hernandez, D. Owens, and B. Kippelen. (2007). Variable splitting ratio 2×2 MMI couplers using multimode waveguide holograms. Opt. Express, Vol. 15, pp. 9015-9021.
[39] Q. Lai, M. Bachmann, W. Hunziker, P.A. Besse, and H. Melchior. (1996). Arbitrary ratio power splitters using angled silica on silicon multi- mode interference couplers. Electron. Lett., Vol. 32, pp. 1576-1577.
[40] P. A. P. A. Besse, E. Gini, M. Bachmann, and H. Melchior. (1996). New 2x2 and 1x3 multimode interference couplers with free selection of power splitting ratios. J. Lightwave Technol., Vol. 14, pp. 2286-2293.
[41] Y. Tian, J. Qiu, M. Yu, Z. Huang, Y. Qiao, Z. Dong, and J. Wu. (2018). Broadband 1 × 3 couplers with variable splitting ratio using cascaded step-size MMI. IEEE Photonics Journal, Vol. 10, pp.6601008.
[42] K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q.Song. (2017). Integrated photonic power divider with arbitrary power ratios. Opt. Lett., Vol. 42, pp. 855-858.
[43] Q. Deng, L. Liu, X. Li, and Z. Zhou. (2014). Arbitrary-ratio 1 × 2 power splitter based on asymmetric multimode interference. Opt. Lett., Vol. 39, pp. 5590-5593.
[44] H. T. Wang, C. F. Chen, and S. Chi. (2015). A good performance 3-dB splitter based on coupling-weighted and velocity-tapered waveguides. Opt. Commun., Vol. 350, pp. 97-102.