跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉謹瑜
Jin-yu Liu
論文名稱: 以中孔徑矽分子篩作為氣相PAHs吸附劑之探討
Using mesoporous silicate MCM-41 as a sorbent for enrichment of PAHs
指導教授: 王家麟
Jia-lin Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 96
語文別: 中文
論文頁數: 84
中文關鍵詞: 中孔徑矽分子篩氣相層析質譜儀多環芳香族化合物
外文關鍵詞: XAD-2, MCM-41, GC/MS, PAHs
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以合成之中孔徑矽分子篩MCM-41做為採集空氣中多環芳香族化合物(polycyclic aromatic hydrocarbons, PAHs)的吸附劑,測試其吸附捕捉的能力,嘗試開發這類材料在化學分析中作為濃縮汙染物的可能用途。
    中孔徑矽分子篩具有極高的表面積和熱穩定性、孔徑大小一致且可調整孔徑大小(2-50nm)等優點,近年來亦應用於分離、大分子催化反應、光電材料等用途。本實驗室先前的研究顯示,中孔徑矽分子篩MCM-41對大於C6以上的有機物質具有定量的吸附特性,但無法在氣相條件下測試MCM-41對大於C12分子的吸附效率。MCM-41的大孔徑特性預期應能延伸至大於C12的物質吸附,但由於空氣中之大分子濃度非常低,加上線上濃縮法無法有效將低揮發性物質熱脫附進入層析儀,因此本研究改以汽、機車廢氣排氣中之PAHs作為大分子的產生來源,測試MCM-41的吸特性;採樣後經索式萃取、樣品淨化及濃縮後,再以GC/MS測定吸附PAHs的能力,並與商業化吸附材料XAD-2做比較。實驗結果顯示二行程機車廢氣因易受到機油基質干擾,造成定性定量上的困難;而針對四行程機車廢氣,MCM-41與XAD-2均捕捉到naphthalene、acenaphthylene、acenaphthene、fluorene、phenanthrene、fluoranthene與pyrene等氣態PAHs物種,濃度介於15 ~ 2.8 x 105 ng/m3 ;於柴油車動力計採樣則分別針對引擎怠轉、20km/hr、與40km/hr三狀態之採樣,成功檢測出naphthalene、acenaphthylene、acenaphthene、fluorene、phenanthrene之氣態PAHs,濃度介於10~2.5 x 104 ng/m3;而除了揮發度較高之naphthalene其回收率約20~30%之外,其餘回收率均介於50%~150%,展現MCM-41材料作為濃縮半揮發性汙染物的應用潛力。


    The feasibility of employing mesoporous silicate MCM-41 as a sorbent for enriching ambient polycyclic aromatic hydrocarbons (PAHs) was investigated. The properties of mesoporous silicates involving high thermal stability, uniform porosity, and adjustable pore size capability (2-50 nm), etc., have created their various applications in abatement of volatile pollutants, separation, large molecule catalytic reactions, photoelectric studies, etc. Based on our preliminary results, MCM-41 can quantitatively absorb volatile organic compounds (VOCs) larger than C6. Nevertheless, the technical difficulties in preparing low boiling gas mixtures and thermal desorption for gas chromatography analysis hindered the sorption test of MCM-41 extending to larger than C12 molecules. As a result, in this study motor vehicle exhaust was employed as the source of low boiling molecules, in which PAHs were the target compounds for the assessment of sorption ability of MCM-41, via comparing with the commercially available XAD-2 serving as a reference.
    It was demonstrated that in the test of a 2-stroke motorcycle, lubricating oil in the exhaust contributed a serious matrix effect interfering with the PAH analysis. In testing the 4-stroke motorcycle, both MCM-41 and XAD-2 exhibited similar sorption ability and various target PAHs were found, e.g., naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, fluoranthene, and pyrene with concentration in the range of 15 ~ 2.8 x 105 ng/m3. In the test of diesel buses, 3 conditions of idle, 20 km/hr, and 40 km/hr, respectively, were tested on a dynamometer, and naphthalene, acenaphthylene, acenaphthene, fluorene, and phenanthrene were found with concentration in the range of 10 ~ 2.5 x 104 ng/m3. Other than naphthalene, whose recovery is 20~30% due to its volatility, the recovery for other PAHs are between 50 and 150%, demonstrating high applicability of MCM-41 as a potential sorbent for the enrichment of semi-VOCs.

    中文摘要 I 英文摘要 III 圖目錄 VIII 表目錄 X 第一章 前言 1 1-1 研究緣起 1 1-2 PAHs命名與特性 4 1-3 PAHs之形成機制、來源及其毒性與危害 11 1-4 PAHs的分析 14 第二章 文獻回顧 17 2-1 研究背景 17 2-2 中孔徑分子篩發展背景 18 2-3 MCM-41形成機制 23 2-3.1 界面活性劑之介紹 23 2-3.2 純矽中孔洞分子篩合成的機制 24 2-3.3 液晶模板機制 26 2-4 XAD多孔介質 28 2-5化學吸附劑的吸附性質 30 第三章 實驗步驟與方法 32 3-1實驗設備 32 3-1.1萃取設備與藥品 32 3-1.2採樣設備 36 3-2實驗步驟 38 3-2.1標準品製備 38 3-2.2採樣前處理 40 3-2.3 汽、機車排氣採樣 41 3-3 樣品處理 45 3-3.1 PAHs萃取 45 3-3.2 萃取液淨化 45 3-3.3 淨化液濃縮 46 3-4樣品分析 46 3-4.1 氣相層析儀與層析管柱 46 3-4.2 質譜議 47 3-4.3 掃描模式 50 第四章 實驗結果與討論 54 4-1 系統線性及再現性 55 4-1.1 定性鑑定 55 4-1.2 定量分析 56 4-2 採樣結果之探討 66 4-2.1 空白試驗 66 4-2.2 二行程機車 66 4-2.3 四行程機車 69 4-2.4 柴油車 73 4-3. 回收率 77 第五章結論及未來展望 79 參考文獻 81

    1.陳彥銓, 以質譜儀同時分析C3~C12揮發性臭氧前驅物, 2004,碩士論文, 中央大學化學研究所.
    2.王介亨, 以Heart-cut 技術配合單偵檢器發展氣相層析“剪裁(tailoring)技術", 2004, 碩士論文, 中央大學化學研究所.
    3.蘇源昌, 內部標準在氣相層析質譜儀分析揮發性有機物的效能探討, 2006, 碩士論文, 中央大學化學研究所.
    4.吳季融, 空氣中有機污染物自動分析技術之開發研究 壹、碳沸石多重床與中孔徑矽沸石之氣體吸附特性研究貳、有機污染物垂直探空光化研究, 2003, 碩士論文, 中央大學化學研究所.
    5.蕭麗君, 新吸附材料用空氣中揮發性物質的萃取方法開發, 碩士論文, 2005, 中央大學化學研究所.
    6.吳東明, 2005, 中孔徑矽分子篩與微孔徑碳分子篩使用於VOC 線上濃縮之吸附性比較, 碩士論文,中央大學化學研究所.
    7.李育誠, 矽與碳結構多孔物質作為VOC線上濃縮之吸脫附特性比較, 2007, 碩士論文, 中央大學化學研究所.
    8.U.S. EPA, Locating and estimating air emission from sources of polycyclic organic matter (POM), 1987, EPA-45014-84-007.
    9.Srogi, K., Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review, 2007, Environ. Chem. Lett., 5, 169-195.
    10.Nollet, L. M. L., Chromatographic Analysis of the Environment, 2006, Taylor & Francis Group.
    11.曾凡剛編著, 2003, 大氣環境監測,化學工業出版社.
    12.Guerrin, M. R., Environment tobacco smoke exposure assessment.In: Tobacco smoke, 1993, Springer, New York.
    13.Chiang, T. A., Wu, P. F., Ko, Y. C., Identification of carcinogens in cooking oil fumes, 1999, Environ Res Sec, 81(1), 18–22.
    14.Boström, C. E., Gerde P., Hanberg, A., Jernström, B., Johansson, C., Kyrklund, T., Rannug, A., Törnqvist, M., Victorin K., Westerholm, R., Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air, 2002, Environ. Health Persp., 110:3, 451-488.
    15.Grimmer, G., Brune, H, Deutch-Wenzel, R. P., Naujack, K. W., Misfeld, J., Timm, J., On the contribution of polycyclic aromatic hydrocarbons to the carcinogenic impact of automobile exhaust condensate evaluated by local application onto mouse skin, 1983, Cancer Lett, 21, 105–113.
    16.Dianne L. P., Michele M. S., Lane C. S., Stephen, A. W., Analysis of polycyclic aromatic hydrocarbons(PAHs) in environmental samples: a critical review of gas chromatographic (GC) methods, 2006, Anal. Bioanal. Chem., 386, 859-881.
    17.USEPA “Compendium Method TO-13: Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in ambient air using gas Chromatography/Mass Spectrometry(GC/MS)”.
    18.http://www.niea.gov.tw/niea/AIR/A73070C.htm
    19.徐如人等編著, 分子篩與多孔材料化學, 2004, 科學出版社, 北京.
    20.Bhattacharyya, S., Lelong, G., Saboungi, M. L., Recent progress in the synthesis and selected applications of MCM-41: a short review, J. Exper. Nanosci., 2006,1:3, 375-395.
    21.Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359, 710-712.
    22.Beck, J. S., Vartuli, J. C., Roth, W. J., Leonwicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson D. H., Sheppard, E. W., Higgins, S. B., Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 2002, 114, 10834-10843.
    23.Vartuli, J. C., Schmitt, K. D., Kresge, C. T., Roth, W. J., Ieonowicz, M. E., McCullen, S. B., Hellring, S. D., Beck, J. S., Schlenker, J. L., Olsen, D. H., Sheppard, E. W., Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications, Chem. Mater., 1994, 6, 2317-2326.
    24.Vartuli, J. C., Kresge, C. T., Roth, W. J., McCullen, S. B., Beck, J. S., Schmitt, K. D., Leonowicz, M. E., Lutner, J. D., Sheppard, E. W. in Proceedings of the209th ACS National Meeting, Division of Petroleum Chemistry, 1995, 21-25.
    25.丁君強, 含鋁中孔洞分子篩之結構鑑定與催化活性研究:直接合成與後修飾法之比較, 2004, 碩士論文, 中央大學化學研究所
    26.Wu, C. G., Bein, T., Polyaniline wires in oxidant-containing mesoporous channel hosts, Chem. Mater., 1994, 6, 1109-1112.
    27.Kim, J. M., Kwak, J. H., Jun, S., Ryoo, R., Ion exchange and thermal stability of MCM-41, J. Phys. Chem., 1995, 99, 16742-16747.
    28.Grün, M., Kurganov, A. A., Schacht, S., Schüth, F., Unger, K. K., Comparison of an ordered mesoporous aluminosilicate, silica, alumina. Titania and zirconia in normal-phase high-performance liquid chromatography, J. Chromatogr. A, 1996, 740, 1-9.
    29.Feng, X., et al, Functionalized monolayers on ordered mesoporous supports, Science, 1997, 276, 923-926
    30.Shu, G., Fujii, Y., Yamashita, H., Koyano, K., Tatsumi, T., Anpo, M., Photocatalytic Reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 Mesoporous Zeolites at 328 K, Chem. Lett., 1997, 7, 659-660.
    31.Morishige, K., Fujii, H., Uga, M., Kinukawa, D., Capillary Critical Point of Argon, Nitrogen, Oxygen, Ethylene, and Carbon Dioxide in MCM-41, Langmuir, 1997, 13, 3494-3498.
    32.Vallet-Regi, M., Rámila, A., del Real, R. P., Pérez-Pariente J., A new property of MCM-41: drug delivery system, Chem. Mater., 2001, 13, 308-311.
    33.Yuliarto, B., Zhou, H. S., Yamada, T., Honma, I., Asai, K., Synthesis of a surface photovoltage sensor using self-ordered tin-modified MCM-41 films: enhanced NO2 gas sensing, ChemPhysChem, 2004, 5, 261-265.
    34.Urbán, M., Méhn, D., Kónya, Z., Kiricsi, I., Production of carbon nanotubes inside the pores of mesoporous silicates, Chem. Phy. Lett., 2002, 359, 95–100.
    35.Wu, T. M., Wu, G.R., Kao, H. M., Wang, J. L., Using mesoporous silica MCM-41 for in-line enrichment of atmospheric volatile organic compounds, J. Chromatogr. A, 2006, 1105, 168–175.
    36.Soler-Illia, G. J. de A. A., Sanchez, C., Lebeau, B., Patarin, J., Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures, Chem. Rev., 2002, 102, 4093-4138.
    37.Chen, C. Y., Burkett, S. L., Li, H. X., Davis, M. E., Little energetic limitation to microporous and mesoporous materials, Microporous Mater., 1993, 2, 27-34.
    38.Sherrington, D. C., Preparation structure and morphology of polymer supports, Chem. Commun., 1998, 2275-2286.

    QR CODE
    :::