跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王新博
Hsin-Po Wang
論文名稱: 結合GEMPY與FLOPY開源模式模擬沿海地區中海淡水相互作用
Integration of GemPy and FloPy packages for modeling seawater and freshwater interactions in coastal aquifers
指導教授: 倪春發
Chuen-Fa Ni
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 107
中文關鍵詞: 沿海含水層開源軟體海淡水相互作用地質模型
外文關鍵詞: coastal aquifer, open-source, seawater and freshwater interaction, geological model
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在沿海地區,地下水資源自然會遇到與海水共存的問題,一旦海水過度入侵,會導致土壤鹽化、地表植被或耕作毀損等問題產生,因此需要透過觀測資料與數值模型了解海淡水的交界分布範圍,以及其受潮汐影響所造成的變化。水文地質數值模式模擬工作首重地質概念模型之建立,建構符合現地條件之地質模型可有效降低推估結果之不確定性,並提升水資源計算與評估之精準度。本研究以國立中央大學TaiCOAST臨海工作站為目標,進行水文地質調查工作,包括岩心鑽探與地質材料判識、地下水文觀測、水文地質特徵參數等,以GemPy開源地質建模套件建置三維地質概念模型,結合FloPy進行沿海地區流場模擬。本研究將場址內岩心分成兩部分,一部分用於建立地質模型,另一部份用於比對結果;流場模型則使用兩至三個月平均地下水頭做為建模依據,並透過海淡水的水頭變化進行模式驗證,最後藉由觀察流場模型探討潮汐變化對於沿海地區的影響。本研究能夠更有效率的藉由開源軟體建立三維水文地質模型,並串連python語言之水流數值模式套件進行地下水流場分析,以使用場址內三口岩心資料,藉由GemPy進行插植計算完成場址內三維地質模型並討論,以及利用地質模型所得之材料分布推估水力傳導係數導入Flopy程式內建立流場模擬。本研究期望透過大量岩心資料降低地質模型不確定性,提升地下水流流場推估之準確性,研究結果也能提供水文地質建模可行方案的參考依據。本研究結果顯示在TaiCOAST測站內之地下水鹽度隨潮汐之變化,地下水鹽度隨深度之變化主要受到地質分層結果影響,在高程-30m以上,水力傳導係數值較大,鹽度較容易隨潮汐變化;在高程-30m以下,水力傳導係數值較小,鹽度較不易隨潮汐變化。


    Coastal groundwater resource is a potential alternative water resource to bridge the gap of increasing water demands. An accurate hydrogeological model could reduce the uncertainty of the flow and transport estimations in coastal aquifers. The study aims to develop a framework that integrates the open-source GemPy and FloPy for modeling seawater and freshwater interactions in the coastal aquifer in Taoyuan, Taiwan. The GemPy is a geological modeling suite based on implicit interpolation algorithms and is employed to build the 3D geological model for the coastal aquifer. The FloPy allows the users to simulate MODFLOW and the relevant modeling packages for aquifer systems. In the study, a series of field works were conducted to acquire site-specific information, including core drilling and identification of geological materials, groundwater level observation, and hydraulic tests. The geological model uses data obtained from the core samples to map the stratigraphic distribution of the coastal aquifer. The groundwater flow model was then calibrated and validated based on long-term observation at the site. The submarine groundwater discharge at the site was systematically assessed and the parameter heterogeneous induced uncertainty was evaluated. The results of this study indicate that groundwater salinity within the TaiCOAST station varies with tides. The variation of groundwater salinity with depth is primarily influenced by the geological stratification. Above an elevation of -30m, where hydraulic conductivity values are higher, salinity is more susceptible to tidal fluctuations. Below an elevation of -30m, where hydraulic conductivity values are lower, salinity is less likely to change with tides.

    摘要 i Abstract ii 誌謝 iii 目錄 v 圖目錄 vii 表目錄 ix 符號說明 xi 第一章 緒論 1 1-1 前言 1 1-2 研究目的 1 1-3 研究流程 2 1-4 論文架構 3 第二章 文獻回顧 4 2-1 地質建模方式 4 2-2 地下水流場建模方式 5 2-2-1 海淡水交換相關研究 6 第三章 研究方法 8 3-1 研究場址 8 3-1-1 區域地質概況 8 3-1-2 地表探勘 11 3-1-3 地理位置 13 3-1-4 井位分布 14 3-2 地質建模 14 3-2-1 GemPy 15 3-2-2 岩心分析 18 3-2-3 篩分析試驗 19 3-2-4 落水頭試驗 22 3-3 流場模擬 24 3-3-1 FloPy-MODFLOW 24 3-3-2 FloPy-SEAWAT 24 3-3-3 參數設置 26 3-4 GemPy轉換FloPy 27 第四章 結果與討論 28 4-1 室內試驗結果 28 4-1-1 篩分析試驗 28 4-1-2 落水頭試驗 32 4-2 地質模型結果 34 4-3 地下水流場模型 39 4-3-1 地下水位與潮位觀測結果 39 4-3-2 模型結果 42 第五章 結論與建議 47 5-1 結論 47 5-2 建議 48 參考文獻 49 附錄一 53 附錄二 65 附錄三 69 附錄四 74

    [1] Turner, A. Keith, and Keith A. Turner, eds. Three-dimensional modeling with geoscientific information systems. Vol. 354. Springer Science & Business Media, 1992.
    [2] Kelk, Brian., "3-D modelling with geoscientific information systems: the problem", Three-dimensional modeling with geoscientific information systems, 29-37, 1992.
    [3] Turner, A. K., "Challenges and trends for geological modelling and visualisation", Bulletin of Engineering Geology and the Environment, 65, 109-127, 2006.
    [4] Turner, A. K., & Gable, C. W., "A review of geological modeling", Three-dimensional geologic mapping for groundwater applications, 75-79, 2007.
    [5] Wang, Hui, et al., "A segmentation approach for stochastic geological modeling using hidden Markov random fields", Mathematical Geosciences 49, 145-177, 2017.
    [6] Forbes, Florence, and Nathalie Peyrard. "Hidden Markov random field model selection criteria based on mean field-like approximations", IEEE Transactions on Pattern Analysis and Machine Intelligence 25.9, 1089-1101, 2003.
    [7] Pakyuz-Charrier, E., Giraud, J., Ogarko, V., Lindsay, M., & Jessell, M. "Drillhole uncertainty propagation for three-dimensional geological modeling using Monte Carlo", Tectonophysics 747, 16-39, 2018.
    [8] Zhou, Yangxiao, and Wenpeng Li. "A review of regional groundwater flow modeling", Geoscience frontiers 2.2, 205-214, 2011.
    [9] Hydrogeological, Waterloo. "Visual MODFLOW Pro, 3D groundwater flow and contaminant transport modeling." , 2001.
    [10] Clement, T. P., and N. L. Jones. RT3D tutorials for GMS users. No. PNNL-11805. Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 1998.
    [11] Kumar, C. P., and Surjeet Singh. "Concepts and modeling of groundwater system", International Journal of Innovative Science, Engineering and Technology 2.2, 262-271, 2015.
    [12] Bear, Jacob. Hydraulics of groundwater. Courier Corporation, 2012.
    [13] Hubbert, M. King. "The theory of ground-water motion." The Journal of Geology 48.8, Part 1, 785-944, 1940.
    [14] Volker, R. E., and K. R. Rushton. "An assessment of the importance of some parameters for seawater intrusion in aquifers and a comparison of dispersive and sharp-interface modelling approaches." Journal of Hydrology 56.3-4, 239-250, 1982.
    [15] Abarca, Elena, et al. "Quasi-horizontal circulation cells in 3D seawater intrusion." Journal of Hydrology 339.3-4, 118-129, 2007.
    [16] Michael, Holly A., Ann E. Mulligan, and Charles F. Harvey. "Seasonal oscillations in water exchange between aquifers and the coastal ocean." Nature 436.7054, 1145-1148, 2005
    [17] . Chang, Sun Woo, and T. Prabhakar Clement. "Experimental and numerical investigation of saltwater intrusion dynamics in flux‐controlled groundwater systems." Water Resources Research 48.9, 2012.
    [18] Mahesha, A., and S. H. Nagaraja. "Effect of natural recharge on sea water intrusion in coastal aquifers." Journal of Hydrology 174.3-4, 211-220, 1996.
    [19] Mazi, Katerina, Antonis D. Koussis, and Georgia Destouni. "Tipping points for seawater intrusion in coastal aquifers under rising sea level." Environmental Research Letters 8.1, 014001, 2013.
    [20] Mualem, Y., and J. Bear. "The shape of the interface in steady flow in a stratified aquifer." Water Resources Research 10.6, 1207-1215, 1974.
    [21] Dagan, Gedeon, and David G. Zeitoun. "Seawater-freshwater interface in a stratified aquifer of random permeability distribution." Journal of Contaminant Hydrology 29.3, 185-203, 1998.
    [22] Lecca, Giuditta, and Pierluigi Cau. "Using a Monte Carlo approach to evaluate seawater intrusion in the Oristano coastal aquifer: A case study from the AQUAGRID collaborative computing platform." Physics and Chemistry of the Earth, Parts A/B/C 34.10-12, 654-661, 2009.
    [23] 王昱,「桃園─新竹臺地區構造活動與地形特徵」,國立台灣大學,碩士論文,2003年。
    [24] 何春蓀,「台灣地質圖概論-台灣地質圖說明書」,經濟部中央地質調查所,1986年。
    [25] 塗明寬、陳文政,「台灣地質說明書中壢圖幅」,經濟部中央地質調查所,1990年。
    [26] 中華民國都市計劃學會,「97 年桃園縣農地資源空間規劃計畫」,中華民國都市計劃學會,2008年
    [27] 經濟部中央地質調查所,「臺灣地質圖〔1:500,000〕〔2000年〕」,經濟部中央地質調查所,2000年。
    [28] 陳昶宏,「以數值及試驗方法探討非飽和水力特性對非受壓含水層抽水洩降之影響」,國立中央大學,碩士論文,2007年。
    [29] de la Varga, Miguel, Alexander Schaaf, and Florian Wellmann. "GemPy 1.0: open-source stochastic geological modeling and inversion", Geoscientific Model Development 12.1, 1-32, 2019.
    [30] Curtis, Andrew, and Rachel Wood. "Optimal elicitation of probabilistic information from experts", Geological Society, London, Special Publications 239.1, 2004, 127-145.
    [31] Shannon, Claude E. "A mathematical theory of communication", The Bell system technical journal 27.3, 379-423, 1948.
    [32] Wellmann, J. Florian, and Klaus Regenauer-Lieb. "Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models", Tectonophysics 526, 207-216, 2012.
    [33] Dream Civil, Unified Soil Classification System (USCS): With 3 Major Divisions, 2020, https://dreamcivil.com/unified-soil-classification-system/
    [34] R. A. Freeze and J. A. Cherry, Groundwater, 1979
    [35] Guo, Weixing, and Christian David Langevin. User's guide to SEAWAT; a computer program for simulation of three-dimensional variable-density ground-water flow. No. 06-A7. 2002.
    [36] Blanco-Coronas, A. M., et al. "Temperature distribution in coastal aquifers: Insights from groundwater modeling and field data", Journal of Hydrology 603, 126912, 2021.
    [37] Bakker, Mark, et al. "Scripting MODFLOW model development using Python and FloPy", Groundwater 54.5, 733-739, 2016.
    [38] Duque, Carlos, et al. "Combined time domain electromagnetic soundings and gravimetry to determine marine intrusion in a detrital coastal aquifer (Southern Spain)", Journal of Hydrology 349.3-4, 536-547, 2008.
    [39] Calvache, M. L., et al. "Numerical modelling of the potential effects of a dam on a coastal aquifer in S. Spain", Hydrological Processes: An International Journal 23.9, 1268-1281, 2009.
    [40] Schulze‐Makuch, Dirk. "Longitudinal dispersivity data and implications for scaling behavior", Groundwater 43.3, 443-456, 2005.
    [41] Zech, Alraune, et al. "A critical analysis of transverse dispersivity field data", Groundwater 57.4, 632-639, 2019.
    [42] Langevin, C. D., et al. "4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport: US Geological Survey Techniques and Methods Book 6", Chapter A22, 2007.

    QR CODE
    :::