跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭伊迪
Yi-di Siao
論文名稱: 製備抗凝血酶核酸適合體-鉑錯合物與其應用在凝血酶及抗凝血酶素之比色法檢測
Preparation of a DNA aptamer-Pt Complex and its Use in the Colorimetric Sensing of Thrombin and Anti thrombin Antibodies
指導教授: 陳文逸
Wen-yih Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 196
中文關鍵詞: 凝血酶酵素核酸生物檢測適合體
外文關鍵詞: enzyme, thrombin, DNA, aptamer, bioassay
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用核酸適合體(DNA aptamer)及鉑錯合物(K2PtCl4)製備核酸適合體-鉑錯合物(aptamer-Pt complexes),其具有核酸適合體(aptamer)的專一鍵結能力及催化過氧化反應的催化活性。利用改變不同合成環境尋找催化活性之最佳化合成條件,與蛋白質酵素比較。並選擇凝血酶為分析物及對應的核酸適合體(thrombin binding aptamer),發展發展核酸酵素連結適合體分析法及競爭型核酸酵素連結合適體分析法,對核酸適合體-鉑錯合物之功能加以驗證。同時對核酸適合體-鉑錯合物做熱穩定性、保存時間、穩定性之特性分析。進一步篩選分子量,提升核酸適合體-鉑錯合物之檢測效率。
    催化活性最佳化的結果顯示,反應條件在90℃、pH9和8小時有最佳的催化活性,鉑錯合物的水解與核酸適合體的活化程度扮演重要的角色。核酸酵素連結適合體分析法的的結果顯示,抗凝血酶核酸適合體-鉑錯合物可以專一性鍵結凝血酶,並無需蛋白質酵素的幫助下催化過氧化呈色反應,成功檢測凝血酶,檢測極限達0.4?M,所使用檢體100?l,依粒徑篩選核酸適合體-鉑錯合物的結果,檢測效率提高了13倍。競爭型核酸酵素連結合適體分析法同樣成功檢測抗凝血酶素(anti-thrombin),與市售的檢測試劑相比,在低濃度有較佳的檢測效率。比較蛋白質酵素辣根過氧化酶,催化活性Kcat低200倍,Km值則高150倍,但在熱穩定性及隨時間活性衰退的實驗中,核酸適合體-鉑錯合物則表現出優異的特性。
    本研究製備核酸適合體-鉑錯合物具有專一性鍵結能力、催化活性、熱穩定性、活性不易隨時間衰退等優點,在取代臨床檢測及基礎研究被廣泛使用之抗體與酵素上,極具發展潛力。


    DNA aptamers carrying Pt nanoparticles were prepared by the reaction of DNA aptamers (without functionalization with biotin, thiol or other reactive groups) with K2(PtCl4) in solution at 60-90 °C. The DNA-Pt complexes possessed peroxidase enzymatic activity while retaining the specific binding ability of the aptamers. The enzymatic reaction of these complexes obeyed Michaelis-Menten kinetics. Km for the DNA-Pt complex was found to be on the same order as Km for hemin and hemin-DNA complex, but two orders of magnitude higher than that of horseradish peroxidase. The rate of the reaction catalyzed by the DNA-Pt complex, kcat, was found to be on the same order as that of hemin and hemin-DNA complex, but two orders of magnitude lower than that of horseradish peroxidase. Two types of DNAzyme-linked aptamer assays (DLAAs) were developed using these complexes, which successfully detected target proteins, with the sandwich type of DLAA targeting thrombin and the competitive type of DLAA targeting anti-thrombin IgA/G/M in serum. The DNA-Pt complexes retained their peroxidase enzymatic activity even after heat treatment. DLAAs having high thermal stability were developed using these complexes, which were free of animal and plant matter because neither antibodies nor horseradish peroxidase were used in their synthesis.

    中文摘要 I Abstract III 誌謝 IV 目錄 V 圖目錄 IX 表目錄 XII 第一章 緒論 1 第二章 文獻回顧 3 2.1 核酸適合體(Aptamers)介紹 3 2.1.1核酸適合體(Aptamers)發展歷史 3 2.1.2 Systematic Evolution of Ligands by Exponential Enrichments, SELEX 6 2.1.3核酸適合體(Aptamers)與抗體(Antibody)之比較 11 2.1.4核酸適合體(Aptamers)之相關應用 16 2.1.4.1 biosensors與Signaling Aptamers之應用 16 2.1.4.2管柱層析與毛細管電泳之應用 19 2.1.4.3藥物發展、治療與臨床之應用 21 2.1.4.4奈米科技(nanotechnology)之應用 30 2.1.4.5問題與展望 33 中文摘要 I Abstract III 誌謝 IV 目錄 V 圖目錄 IX 表目錄 XII 第一章 緒論 1 第二章 文獻回顧 3 2.1 核酸適合體(Aptamers)介紹 3 2.1.1核酸適合體(Aptamers)發展歷史 3 2.1.2 Systematic Evolution of Ligands by Exponential Enrichments, SELEX 6 2.1.3核酸適合體(Aptamers)與抗體(Antibody)之比較 11 2.1.4核酸適合體(Aptamers)之相關應用 16 2.1.4.1 biosensors與Signaling Aptamers之應用 16 2.1.4.2管柱層析與毛細管電泳之應用 19 2.1.4.3藥物發展、治療與臨床之應用 21 2.1.4.4奈米科技(nanotechnology)之應用 30 2.1.4.5問題與展望 33 2.2凝血酶 35 2.2.1凝血酶之簡介 35 2.2.2抗凝血酶核酸適合體(thrombin binding aptamer) 39 2.2.3檢測凝血酶的相關方法 43 2.3 金屬核酸複合物 48 2.3.1核酸金屬複合物之研究方向 48 2.3.1.1抗癌藥物 48 2.3.1.2微小化半導體元件 50 2.3.1.3生物探針 52 2.3.2金屬化DNA的機制 54 第三章 實驗藥品與儀器設備 61 3.1 實驗藥品 61 3.2 儀器設備 64 3.3 實驗步驟 65 3.3.1核酸適合體-鉑錯合物的製備 65 3.3.2酵素活性測定 66 3.3.2.1催化活性dAbs/dM 66 3.3.2.2催化活性Kcat 66 3.3.3核酸酵素聯結適合體檢測法 68 3.3.4競爭型核酸酵素連結合適體檢測法 69 3.3.5核酸適合體-鉑錯合物Kd值測定 70 3.3.6離心超濾管實驗 72 3.3.7膠體電泳 73 3.3.7.1膠體製備 73 3.3.7.2電泳 74 3.3.7.3染色 75 3.3.8圓二色光譜儀 76 第四章 結果與討論 77 4.1適合體-鉑錯合物之鑑定 77 4.2核酸適合體-鉑錯合物結構分析 80 4.3適合體-鉑錯合物成分分析 82 4.4適合體-鉑錯合物之催化活性 84 4.4.1催化活性最佳化 84 4.4.1.1溫度效應 84 4.4.1.2 pH值效應 86 4.4.1.3時間效應 88 4.4.2 酵素活性Kcat 90 4.5適合體-鉑錯合物之特性分析 92 4.5.1 溫度對催化活性之影響 92 4.5.2穩定性 94 4.5.3 時間對催化活性之影響 96 4.6核酸酵素連結適合體分析法(DNAzyme-linked aptamer assay, DLAA) 98 4.7競爭型核酸酵素連結適核體分析法(Competitive type of DNAzyme-linked aptamer assay) 102 4.8膠體電泳 105 4.9適合體-鉑錯合物之檢測效率最佳化 111 第五章 結論 116 第六章 未來展望 118 第七章 參考文獻 121

    1. Engvall E., P Perlmann. 1971. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G.Immunochemistry (8) :871-874.
    2. Robertson, D. L., and G. F. Joyce. 1990. Selection Invitro of an Rna Enzyme That Specifically Cleaves Single-Stranded-DNA. Nature 344 (6265):467-468.
    3. Tuerk, C., and L. Gold. 1990. Systematic Evolution of Ligands by Exponential Enrichment - Rna Ligands to Bacteriophage-T4 DNA-Polymerase. Science 249 (4968):505-510.
    4. Ellington, A. D., and J. W. Szostak. 1990. Invitro Selection of Rna Molecules That Bind Specific Ligands. Nature 346 (6287):818-822.
    5. Matsuoka, Y., T. Onodera, T. Kojima, Y. Chang, W. Y. Chen, T. Imanaka, H. Fukushima, and A. Higuchi. 2007. Novel enzymatic properties of DNA-Pt complexes. Biomacromolecules 8 (9):2684-2688.
    6. White, H. B. 2002. Konrad Bloch, evolution, and the RNA world. Biochemical and Biophysical Research Communications 292 (5):1267-1271.
    7. Gueerrier-Takada, C., S. Altma. 1984. “Catalytic activity of an RNA molecule prepared by transcription in vitro. Science 223(4633):285-6
    8. Bass, B. L., T. R Cech. 1984. Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: Implications for biological catalysis by RNA. Nature 308(5962): 820–826.
    9. Breaker, R. R. 2004. Natural and engineered nucleic acids as tools to explore biology. Nature 432 (7019):838-845.
    10. Gilbert, S. D., C. D. Stoddard, S. J. Wise, and R. T. Batey. 2006. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. Journal of Molecular Biology 359 (3):754-768.
    11. Osborne, S. E., and A. D. Ellington. 1997. Nucleic acid selection and the challenge of combinatorial chemistry. Chemical Reviews 97 (2):349-370.
    12. Gopinath, S. C. B., T. S. Misono, K. Kawasaki, T. Mizuno, M. Imai, T. Odagiri, and P. K. R. Kumar. 2006. An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion. Journal of General Virology 87:479-487.
    13. Sekiya, S., K. Noda, F. Nishikawa, T. Yokoyama, P. K. R. Kumar, and S. Nishikawa. 2006. Characterization and application of a novel RNA aptamer against the mouse prion protein. Journal of Biochemistry 139 (3):383-390.
    14. Nishikawa, F., K. Funaji, K. Fukuda, and S. Nishikawa. 2004. In vitro selection of RNA aptamers against the HCVNS3 helicase domain. Oligonucleotides 14 (2):114-129.
    15. Ciesiolka, J., J. Gorski, and M. Yarus. 1995. Selection of an Rna Domain That Binds Zn2+. Rna-a Publication of the Rna Society 1 (5):538-550.
    16. Nieuwlandt, D., M. Wecker, and L. Gold. 1995. In-Vitro Selection of Rna Ligands to Substance-P. Biochemistry 34 (16):5651-5659.
    17. Khati, M., M. Schuman, J. Ibrahim, Q. Sattentau, S. Gordon, and W. James. 2003. Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2 '' F-RNA aptamers. Journal of Virology 77 (23):12692-12698.
    18. Pileur, F., M. L. Andreola, E. Dausse, J. Michel, S. Moreau, H. Yamada, S. A. Gaidamakov, R. J. Crouch, J. J. Toulme, and C. Cazenave. 2003. Selective inhibitory DNA aptamers of the human RNase H1. Nucleic Acids Research 31 (19):5776-5788.
    19. Misono, T. S., and P. K. R. Kumar. 2005. Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Analytical Biochemistry 342 (2):312-317.
    20. Mendonsa, S. D., and M. T. Bowser. 2005. In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. Journal of the American Chemical Society 127 (26):9382-9383.
    21. Mendonsa, S. D., and M. T. Bowser. 2004. In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Analytical Chemistry 76 (18):5387-5392.
    22. Drabovich, A., M. Berezovski, and S. N. Krylov. 2005. Selection of smart aptamers by equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM). Journal of the American Chemical Society 127 (32):11224-11225.
    23. Berezovski, M. V., M. U. Musheev, A. P. Drabovich, J. V. Jitkova, and S. N. Krylov. 2006. Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides. Nature Protocols 1 (3):1359-1369.
    24. Blank, M., T. Weinschenk, M. Priemer, and H. Schluesener. 2001. Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels - Selective targeting of endothelial regulatory protein pigpen. Journal of Biological Chemistry 276 (19):16464-16468.
    25. Yang, X. B., X. Li, T. W. Prow, L. M. Reece, S. E. Bassett, B. A. Luxon, N. K. Herzog, J. Aronson, R. E. Shope, J. F. Leary, and D. G. Gorenstein. 2003. Immunofluorescence assay and flow-cytometry selection of bead-bound aptamers. Nucleic Acids Research 31 (10):-.
    26. Bunka, D. H. J., and P. G. Stockley. 2006. Aptamers come of age - at last. Nature Reviews Microbiology 4 (8):588-596.
    27. Cox, J. C., and A. D. Ellington. 2001. Automated selection of anti-protein aptamers. Bioorganic & Medicinal Chemistry 9 (10):2525-2531.
    28. Bock, C., M. Coleman, B. Collins, J. Davis, G. Foulds, L. Gold, C. Greef, J. Heil, J. S. Heilig, B. Hicke, M. N. Hurst, G. M. Husar, D. Miller, R. Ostroff, H. Petach, D. Schneider, B. Vant-Hull, S. Waugh, A. Weiss, S. K. Wilcox, and D. Zichi. 2004. Photoaptamer arrays applied to multiplexed proteomic analysis. Proteomics 4 (3):609-618.
    29. Eulberg, D., K. Buchner, C. Maasch, and S. Klussmann. 2005. Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Research 33 (4):-.
    30. Lee, J. F., J. R. Hesselberth, L. A. Meyers, and A. D. Ellington. 2004. Aptamer database. Nucleic Acids Research 32:D95-D100.
    31. Kawakami, J., H. Imanaka, Y. Yokota, and N. Sugimoto. 2000. In vitro selection of aptamers that act with Zn2+. Journal of Inorganic Biochemistry 82 (1-4):197-206.
    32. Koizumi, M., and R. R. Breaker. 2000. Molecular recognition of cAMP by an RNA aptamer. Biochemistry 39 (30):8983-8992.
    33. Huizenga, D. E., and J. W. Szostak. 1995. A DNA Aptamer That Binds Adenosine and Atp. Biochemistry 34 (2):656-665.
    34. Vianini, E., M. Palumbo, and G. Barbara. 2001. In vitro selection of DNA aptamers that bind L-Tyrosinamide. Bioorganic & Medicinal Chemistry 9 (10):2543-2548.
    35. Geiger, A., P. Burgstaller, H. vonderEltz, A. Roeder, and M. Famulok. 1996. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Research 24 (6):1029-1036.
    36. Zimmermann, G. R., T. P. Shields, R. D. Jenison, C. L. Wick, and A. Pardi. 1998. A semiconserved residue inhibits complex formation by stabilizing interactions in the free state of a theophylline-binding RNA. Biochemistry 37 (25):9186-9192.
    37. Brockstedt, U., A. Uzarowska, A. Montpetit, W. Pfau, and D. Labuda. 2004. In vitro evolution of RNA aptamers recognizing carcinogenic aromatic amines. Biochemical and Biophysical Research Communications 313 (4):1004-1008.
    38. Plummer, K. A., J. M. Carothers, M. Yoshimura, J. W. Szostak, and G. L. Verdine. 2005. In vitro selection of RNA aptamers against a composite small molecule-protein surface. Nucleic Acids Research 33 (17):5602-5610.
    39. Gopinath, S. C. B. 2007. Methods developed for SELEX. Analytical and Bioanalytical Chemistry 387 (1):171-182.
    40. Pendergrast, P. S., H. N. Marsh, D. Grate, J. M. Healy, M. Stanton. 2005. Nucleic acid aptamers for target validation and therapeutic applications. Journal of Biomolecular Techniques 2005 16(3):224-34.
    41. Jenison, R. D., S. C. Gill, A. Pardi, and B. Polisky. 1994. High-Resolution Molecular Discrimination by Rna. Science 263 (5152):1425-1429.
    42. Michaud, M., E. Jourdan, C. Ravelet, A. Villet, A. Ravel, C. Grosset, and E. Peyrin. 2004. Immobilized DNA aptamers as target-specific chiral stationary phases for resolution of nucleoside and amino acid derivative enantiomers. Analytical Chemistry 76 (4):1015-1020.
    43. Nimjee, S. M., C. P. Rusconi, and B. A. Sullenger. 2005. Aptamers: An emerging class of therapeutics. Annual Review of Medicine 56:555-+.
    44. Daniels, D. A., H. Chen, B. J. Hicke, K. M. Swiderek, and L. Gold. 2003. A tenascin-C aptamer identified by tumor cell SELEX: Systematic evolution of ligands by exponential enrichment. Proceedings of the National Academy of Sciences of the United States of America 100 (26):15416-15421.
    45. Hicke, B. J., C. Marion, Y. F. Chang, T. Gould, C. K. Lynott, D. Parma, P. G. Schmidt, and S. Warren. 2001. Tenascin-C aptamers are generated using tumor cells and purified protein. Journal of Biological Chemistry 276 (52):48644-48654.
    46. Lee, J. F., G. M. Stovall, and A. D. Ellington. 2006. Aptamer therapeutics advance. Current Opinion in Chemical Biology 10 (3):282-289.
    47. Kusser, W. 2000. Chemically modified nucleic acid aptamers for in vitro selections: evolving evolution. Reviews in Molecular Biotechnology 74(1):27-38.
    48. Floege, J., T. Ostendorf, U. Janssen, M. Burg, H. H. Radeke, C. Vargeese, S. C. Gill, L. S. Green, and N. Janjic. 1999. Novel approach to specific growth factor inhibition in vivo - Antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. American Journal of Pathology 154 (1):169-179.
    49. Kopylov, A. M., and V. A. Spiridonova. 2000. Combinatorial chemistry of nucleic acids: SELEX. Molecular Biology 34 (6):940-954.
    50. Nelson, J. S., L. Giver, A. D. Ellington, and R. L. Letsinger. 1996. Incorporation of a non-nucleotide bridge into hairpin oligonucleotides capable of high-affinity binding to the Rev protein of HIV-1. Biochemistry 35 (16):5339-5344.
    51. Eaton, B. E., and W. A. Pieken. 1995. Ribonucleosides and Rna. Annual Review of Biochemistry 64:837-863.
    52. Lee, J. O., H. M. So, E. K. Jeon, H. Chang, K. Won, and Y. H. Kim. 2008. Aptamers as molecular recognition elements for electrical nanobiosensors. Analytical and Bioanalytical Chemistry 390 (4):1023-1032.
    53. Liss, M., B. Petersen, H. Wolf, and E. Prohaska. 2002. An aptamer-based quartz crystal protein biosensor. Analytical Chemistry 74 (17):4488-4495.
    54. Savran, C. A., S. M. Knudsen, A. D. Ellington, and S. R. Manalis. 2004. Micromechanical detection of proteins using aptamer-based receptor molecules. Analytical Chemistry 76 (11):3194-3198.
    55. Mir, M., M. Vreeke, and L. Katakis. 2006. Different strategies to develop an electrochemical thrombin aptasensor. Electrochemistry Communications 8 (3):505-511.
    56. Ikebukuro, K., C. Kiyohara, and K. Sode. 2005. Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosensors & Bioelectronics 20 (10):2168-2172.
    57. Ikebukuro, K., C. Kiyohara, and K. Sode. 2004. Electrochemical detection of protein using a double aptamer sandwich. Analytical Letters 37 (14):2901-2909.
    58. Xiao, Y., A. A. Lubin, A. J. Heeger, and K. W. Plaxco. 2005. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angewandte Chemie-International Edition 44 (34):5456-5459.
    59. Xiao, Y., B. D. Piorek, K. W. Plaxco, and A. J. Heeger. 2005. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. Journal of the American Chemical Society 127 (51):17990-17991.
    60. Sanchez, J. L. A., E. Baldrich, A. E. G. Radi, S. Dondapati, P. L. Sanchez, I. Katakis, and C. K. O''Sullivan. 2006. Electronic ''off-on'' molecular switch for rapid detection of thrombin. Electroanalysis 18 (19-20):1957-1962.
    61. Bang, G. S., S. Cho, and B. G. Kim. 2005. A novel electrochemical detection method for aptamer biosensors. Biosensors & Bioelectronics 21 (6):863-870.
    62. Baker, B. R., R. Y. Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, and K. W. Plaxco. 2006. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. Journal of the American Chemical Society 128 (10):3138-3139.
    63. Lai, R. Y., K. W. Plaxco, and A. J. Heeger. 2007. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Analytical Chemistry 79 (1):229-233.
    64. So, J. H., H. J. Kim, H. Kang, H. Park, S. Ryu, S. W. Jung, S. Doh, S. Kim, and K. Kim. 2007. Development of liquid scintillator system for proton flux monitoring. Journal of the Korean Physical Society 50 (5):1506-1509.
    65. Maehashi, K., T. Katsura, K. Kerman, Y. Takamura, K. Matsumoto, and E. Tamiya. 2007. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Analytical Chemistry 79 (2):782-787.
    66. Nutiu, R., and Y. F. Li. 2005. Aptamers with fluorescence-signaling properties. Methods 37 (1):16-25.
    67. Nutiu, R., and Y. F. Li. 2003. Structure-switching signaling aptamers. Journal of the American Chemical Society 125 (16):4771-4778.
    68. Yang, C. J., S. Jockusch, M. Vicens, N. J. Turro, and W. H. Tan. 2005. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proceedings of the National Academy of Sciences of the United States of America 102 (48):17278-17283.
    69. Navani, N. K., and Y. F. Li. 2006. Nucleic acid aptamers and enzymes as sensors. Current Opinion in Chemical Biology 10 (3):272-281.
    70. Ravelet, C., C. Grosset, and E. Peyrin. 2006. Liquid chromatography, electrochromatography and capillary electrophoresis applications of DNA and RNA aptamers. Journal of Chromatography A 1117 (1):1-10.
    71. Romig, T. S., C. Bell, and D. W. Drolet. 1999. Aptamer affinity chromatography: combinatorial chemistry applied to protein purification. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 731 (2):275-284.
    72. Connor, A. C., and L. B. McGown. 2006. Aptamer stationary phase for protein capture in affinity capillary chromatography. Journal of Chromatography A 1111 (2):115-119.
    73. Deng, Q., I. German, D. Buchanan, and R. T. Kennedy. 2001. Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase. Analytical Chemistry 73 (22):5415-5421.
    74. Vo, T. U., and L. B. McGown. 2006. Effects of G-quartet DNA stationary phase destabilization on fibrinogen peptide resolution in capillary electrochromatography. Electrophoresis 27 (4):749-756.
    75. Michaud, M., E. Jourdan, A. Villet, A. Ravel, C. Grosset, and E. Peyrin. 2003. A DNA aptamer as a new target-specific chiral selector for HPLC. Journal of the American Chemical Society 125 (28):8672-8679.
    76. Ruta, J., C. Ravelet, C. Grosset, J. Fize, A. Ravel, A. Villet, and E. Peyrin. 2006. Enantiomeric separation using an L-RNA aptamer as chiral additive in partial-filling capillary electrophoresis. Analytical Chemistry 78 (9):3032-3039.
    77. Pich, E. M., and M. P. Epping-Jordan. 1998. Transgenic mice in drug dependence research. Annals of Medicine 30 (4):390-396.
    78. Hannon, G. J. 2002. RNA interference. Nature 418 (6894):244-251.
    79. Taylor, M. F., K. Wiederholt, and F. Sverdrup. 1999. Antisense oligonucleotides: a systematic high-throughput approach to target validation and gene function determination. Drug Discovery Today 4 (12):562-567.
    80. Elbashir, S. M., J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411 (6836):494-498.
    81. Blank, M., and M. Blind. 2005. Aptamers as tools for target validation. Current Opinion in Chemical Biology 9 (4):336-342.
    82. Jellinek, D., L. S. Green, C. Bell, C. K. Lynott, N. Gill, C. Vargeese, G. Kirschenheuter, D. P. C. Mcgee, P. Abesinghe, W. A. Pieken, R. Shapiro, D. B. Rifkin, D. Moscatelli, and N. Janjic. 1995. Potent 2''-Amino-2''-Deoxypyrimidine Rna Inhibitors of Basic Fibroblast Growth-Factor. Biochemistry 34 (36):11363-11372.
    83. Purschke, W. G., D. Eulberg, K. Buchner, S. Vonhoff, and S. Klussmann. 2006. An L-RNA-based aquaretic agent that inhibits vasopressin in vivo. Proceedings of the National Academy of Sciences of the United States of America 103 (13):5173-5178.
    84. Klussmann, S., A. Nolte, R. Bald, V. A. Erdmann, and J. P. Furste. 1996. Mirror-image RNA that binds D-adenosine. Nature Biotechnology 14 (9):1112-1115.
    85. Floege, J., T. Ostendorf, U. Janssen, M. Burg, H. H. Radeke, C. Vargeese, S. C. Gill, L. S. Green, and N. Janjic. 1999. Novel approach to specific growth factor inhibition in vivo - Antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. American Journal of Pathology 154 (1):169-179.
    86. Willis, M. C., B. Collins, T. Zhang, L. S. Green, D. P. Sebesta, C. Bell, E. Kellogg, S. C. Gill, A. Magallanez, S. Knauer, R. A. Bendele, P. S. Gill, and N. Janjic. 1998. Liposome anchored vascular endothelial growth factor aptamers. Bioconjugate Chemistry 9 (5):573-582.
    87. Chang, S. S., C. R. C. Wang. 1998. The Syntheses and Absorption Spectra of Several Metal Nanoparticle Systems. Chemistry 56(3):209-222.
    88. Pavlov, V., Y. Xiao, B. Shlyahovsky, and I. Willner. 2004. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society 126 (38):11768-11769.
    89. Huang, C. C., Y. F. Huang, Z. H. Cao, W. H. Tan, and H. T. Chang. 2005. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Analytical Chemistry 77 (17):5735-5741.
    90. Polsky, R., R. Gill, L. Kaganovsky, and I. Willner. 2006. Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules. Analytical Chemistry 78 (7):2268-2271.
    91. Gill, R., R. Polsky, I. Willner. 2006. Pt Nanoparticles Functionalized with Nucleic Acid Act as Catalytic Labels for the Chemiluminescent Detection of DNA and Proteins. Small 2,No 8-9:1037-1041.
    92. Dwarakanath, S., J. G. Bruno, A. Shastry, T. Phillips, A. John, A. Kumar, and L. D. Stephenson. 2004. Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Biochemical and Biophysical Research Communications 325 (3):739-743.
    93. Levy, M., S. F. Cater, and A. D. Ellington. 2005. Quantum-dot aptamer beacons for the detection of proteins. Chembiochem 6 (12):2163-2166.
    94. So, H. M., D. W. Park, E. K. Jeon, Y. H. Kim, B. S. Kim, C. K. Lee, S. Y. Choi, S. C. Kim, H. Chang, and J. O. Lee. 2008. Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 4 (2):197-201.
    95. Liu, J. W., and Y. Lu. 2006. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angewandte Chemie-International Edition 45 (1):90-94.
    96. Liu, J. W., D. Mazumdar, and Y. Lu. 2006. A simple and sensitive "dipstick" test in serum based on lateral flow separation of aptamer-linked nanostructures". Angewandte Chemie-International Edition 45 (47):7955-7959.
    97. Meade, B. R., and S. F. Dowdy. 2007. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Advanced Drug Delivery Reviews 59 (2-3):134-140.
    98. Kawakami, S., and M. Hashida. 2007. Targeted delivery systems of small interfering RNA by systemic administration. Drug Metabolism and Pharmacokinetics 22 (3):142-151.
    99. Willis, M. C., B. Collins, T. Zhang, L. S. Green, D. P. Sebesta, C. Bell, E. Kellogg, S. C. Gill, A. Magallanez, S. Knauer, R. A. Bendele, P. S. Gill, and N. Janjic. 1998. Liposome anchored vascular endothelial growth factor aptamers. Bioconjugate Chemistry 9 (5):573-582.
    100. Brown, B. A. 1993. Hematology: Principles and Procedures. Philadelphia lea & Febiger, 1993.
    101. Huntington, J. A. 2005. Molecular recognition mechanisms of thrombin. Journal of Thrombosis and Haemostasis 3 (8):1861-1872.
    102. Bode, W., I. Mayr, U.Baumann, R. Huber, S. R. Stone. 1989. The refined 1.9A crystal structure of human a-thrombin:interaction with D-Ph-Pro-Arg chloromethylketone andsignificance of th Tyr-Pro-Pro-Trp insertion segment. EMBO J. 8(11):3467-3475.
    103. Bode W, Mayr I, Baumann U, Huber R, Stone SR, Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 1989 Nov;8(11):3467–3475.
    104. Mandal M., Lee M., Barrick J. E., Weinberg Z., Emilsson G. M., Ruzzo W. L., and Breaker R. R. “A glycine-dependent riboswitch that uses cooperative binding to control gene expression” Science 2004, 306, 275–279.
    105. Gilbert S. D., Stoddard C. D., Wise S. J., and Batey R. T. “Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain” J. Mol. Biol. 2006, 359, 754–768.
    106. Romig, T. S., C. Bell, and D. W. Drolet. 1999. Aptamer affinity chromatography: combinatorial chemistry applied to protein purification. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 731 (2):275-284.
    107. Bock, L. C., L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole. 1992. Selection of Single-Stranded-DNA Molecules That Bind and Inhibit Human Thrombin. Nature 355 (6360):564-566.
    108. Bock, L. C., L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole. 1992. Selection of Single-Stranded-DNA Molecules That Bind and Inhibit Human Thrombin. Nature 355 (6360):564-566.
    109. Wu, Q. Y., M. Tsiang, and J. E. Sadler. 1992. Localization of a Single-Stranded-DNA Binding-Site in the Thrombin Anion-Binding Exosite. Circulation 86 (4):413-413.
    110. Li, W. X., A. V. Kaplan, G. W. Grant, J. J. Toole, and L. L. K. Leung. 1994. A Novel Nucleotide-Based Thrombin Inhibitor Inhibits Clot-Bound Thrombin and Reduces Arterial Platelet Thrombus Formation. Blood 83 (3):677-682.
    111. Kubik, M. F., A. W. Stephens, D. Schneider, R. A. Marlar, and D. Tasset. 1994. High-Affinity Rna Ligands to Human Alpha-Thrombin. Nucleic Acids Research 22 (13):2619-2626.
    112. Tasset, D. M., M. F. Kubik, and W. Steiner. 1997. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. Journal of Molecular Biology 272 (5):688-698.
    113. White, R., C. Rusconi, E. Scardino, A. Wolberg, J. Lawson, M. Hoffman, and B. Sullenger. 2001. Generation of species cross-reactive aptamers using "toggle" SELEX. Molecular Therapy 4 (6):567-574.
    114. Rusconi, C. P., E. Scardino, J. Layzer, G. A. Pitoc, T. L. Ortel, D. Monroe, and B. A. Sullenger. 2002. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419 (6902):90-94.
    115. Heyduk, E., and T. Heyduk. 2005. Nucleic acid-based fluorescence sensors for detecting proteins. Analytical Chemistry 77 (4):1147-1156.
    116. Hermann, T., and D. J. Patel. 2000. Biochemistry - Adaptive recognition by nucleic acid aptamers. Science 287 (5454):820-825.
    117. Macaya, R. F., P. Schultze, F. W. Smith, J. A. Roe, and J. Feigon. 1993. Thrombin-Binding DNA Aptamer Forms a Unimolecular Quadruplex Structure in Solution. Proceedings of the National Academy of Sciences of the United States of America 90 (8):3745-3749.
    118. Gold, B. 2002. Effect of cationic charge localization on DNA structure. Biopolymers 65 (3):173-179.
    119. Manning, G. S. 2003. Comments on selected aspects of nucleic acid electrostatics. Biopolymers 69 (1):137-143.
    120. McDonald, R. J., A. I. Dragan, W. R. Kirk, K. L. Neff, P. L. Privalov, and L. J. Maher. 2007. DNA bending by charged peptides: Electrophoretic and spectroscopic analyses. Biochemistry 46 (9):2306-2316.
    121. Kankia, B. I., and L. A. Marky. 2001. Folding of the thrombin aptamer into a G-quadruplex with Sr2+: Stability, heat, and hydration. Journal of the American Chemical Society 123 (44):10799-10804.
    122. Egawa, T., A. Tsuneshige, M. Suematsu, and T. Yonetani. 2007. Method for determination of association and dissociation rate constants of reversible bimolecular reactions by isothermal titration calorimeters. Analytical Chemistry 79 (7):2972-2978.
    123. Baker, B. M., and K. P. Murphy. 1996. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophysical Journal 71 (4):2049-2055.
    124. Nagatoishi, S., Y. Tanaka, and K. Tsumoto. 2007. Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizing-cation-deficient conditions. Biochemical and Biophysical Research Communications 352 (3):812-817.
    125. Padmanabhan, K., and A. Tulinsky. 1996. An ambiguous structure of a DNA 15-mer thrombin complex. Acta Crystallographica Section D-Biological Crystallography 52:272-282.
    126. Pagano, B., L. Martino, A. Randazzo, and C. Giancola. 2008. Stability and binding properties of a modified thrombin binding aptamer. Biophysical Journal 94 (2):562-569.
    127. Centi, S., S. Tombelli, M. Minunni, and M. Mascini. 2007. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Analytical Chemistry 79 (4):1466-1473.
    128. Bichler, J., J. A. Heit, and W. G. Owen. 1996. Detection of thrombin in human blood by ex-vivo hirudin. Thrombosis Research 84 (4):289-294.
    129. Baldrich, E., A. Restrepo, and C. K. O''Sullivan. 2004. Aptasensor development: Elucidation of critical parameters for optimal aptamer performance. Analytical Chemistry 76 (23):7053-7063.
    130. Rosenberg, B., V. C. Loretta, T. Krigas. 1965. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205:698-699.
    131. Hankey, C. R., S. Eley, W. S. Leslie, C. M. Hunter, and M. E. J. Lean. 2004. Eating habits, beliefs, attitudes and knowledge among health professionals regarding the links between obesity, nutrition and health. Public Health Nutrition 7 (2):337-343.
    132. Fink, H. W., and C. Schonenberger. 1999. Electrical conduction through DNA molecules. Nature 398 (6726):407-410.
    133. Tran, P., B. Alavi, and G. Gruner. 2000. Charge transport along the lambda-DNA double helix. Physical Review Letters 85 (7):1564-1567.
    134. Cai, L. T., H. Tabata, and T. Kawai. 2000. Self-assembled DNA networks and their electrical conductivity. Applied Physics Letters 77 (19):3105-3106.
    135. Yoo, K. H., D. H. Ha, J. O. Lee, J. W. Park, J. Kim, J. J. Kim, H. Y. Lee, T. Kawai, and H. Y. Choi. 2001. Electrical conduction through poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA molecules. Physical Review Letters 8719 (19):-.
    136. Okahata, Y., T. Kobayashi, K. Tanaka, and M. Shimomura. 1998. Anisotropic electric conductivity in an aligned DNA cast film. Journal of the American Chemical Society 120 (24):6165-6166.
    137. Braun, E., Y. Eichen, U. Sivan, and G. Ben-Yoseph. 1998. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391 (6669):775-778.
    138. Seidel, R., L. C. Ciacchi, M. Weigel, W. Pompe, and M. Mertig. 2004. Synthesis of platinum cluster chains on DNA templates: Conditions for a template-controlled cluster growth. Journal of Physical Chemistry B 108 (30):10801-10811.
    139. Keren, K., M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, and E. Braun. 2002. Sequence-specific molecular lithography on single DNA molecules. Science 297 (5578):72-75.
    140. Seidel, R., M. Mertig, and W. Pompe. 2002. Scanning force microscopy of DNA metallization. Surface and Interface Analysis 33 (2):151-154.
    141. Ford, W. E., O. Harnack, A. Yasuda, and J. M. Wessels. 2001. Platinated DNA as precursors to templated chains of metal nanoparticles. Advanced Materials 13 (23):1793-1797.
    142. Richter, J., R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J. Plaschke, and H. K. Schackert. 2000. Nanoscale palladium metallization of DNA. Advanced Materials 12 (7):507-+.
    143. Richter, J., M. Mertig, W. Pompe, I. Monch, and H. K. Schackert. 2001. Construction of highly conductive nanowires on a DNA template. Applied Physics Letters 78 (4):536-538.
    144. Drake, R., R. Dunn, D. C. Sherrington, and S. J. Thomson. 2000. Remarkable activity, selectivity and stability of polymer-supported Pt catalysts in room temperature, solvent-less, alkene hydrosilylations. Chemical Communications (19):1931-1932.
    145. Blacker, A. J., M. L. Clark, M. S. Loft, and J. M. J. Williams. 1999. First highly enantioselective allylic alkylations catalysed by platinum complexes. Chemical Communications (10):913-914.
    146. Lee, A. F., J. J. Gee, and H. J. Theyers. 2000. Aspects of allylic alcohol oxidation - a bimetallic heterogeneous selective oxidation catalyst. Green Chemistry 2 (6):279-282.
    147. Bender, C. F., and R. A. Widenhoefer. 2005. Platinum-catalyzed intramolecular hydroamination of unactivated olefins with secondary alkylamines. Journal of the American Chemical Society 127 (4):1070-1071.
    148. Ishii, Y., and M. Hidai. 1992. Palladium-Catalyzed and Platinum-Catalyzed Cyclocarbonylation Reactions of Substituted Allyl Acetates. Journal of Organometallic Chemistry 428 (1-2):279-287.
    149. Henglein, A., B. G. Ershov, and M. Malow. 1995. Absorption-Spectrum and Some Chemical-Reactions of Colloidal Platinum in Aqueous-Solution. Journal of Physical Chemistry 99 (38):14129-14136.
    150. Duff, D. G., P. P. Edwards, and B. F. G. Johnson. 1995. Formation of a Polymer-Protected Platinum Sol - a New Understanding of the Parameters Controlling Morphology. Journal of Physical Chemistry 99 (43):15934-15944.
    151. Toshima, N., K. Nakata, and H. Kitoh. 1997. Giant platinum clusters with organic ligands: preparation and catalysis. Inorganica Chimica Acta 265 (1-2):149-153.
    152. Mizukoshi, Y., R. Oshima, Y. Maeda, and Y. Nagata. 1999. Preparation of platinum nanoparticles by sonochemical reduction of the Pt(II) ion. Langmuir 15 (8):2733-2737.
    153. Ciacchi, L. C., W. Pompe, and A. De Vita. 2001. Initial nucleation of platinum clusters after reduction of K2PtCl4 in aqueous solution: A first principles study. Journal of the American Chemical Society 123 (30):7371-7380.
    154. Mertig, M., L. C. Ciacchi, R. Seidel, W. Pompe, and A. De Vita. 2002. DNA as a selective metallization template. Nano Letters 2 (8):841-844.
    155. Richter, J. 2003. Metallization of DNA. Physica E-Low-Dimensional Systems & Nanostructures 16 (2):157-173.
    156. Josephygg, P. D., T. Elingg, R. P. Mason. 1982. The Horseradish Peroxidase-catalyzed Oxidation of 3,5,3’,5’-Tetramethylbenzidine. The Journal of Biological Chemistry 7(257):3669-3675.
    157. Choi, S. H., R. B. Cooley, A. S. Hakemian, Y. C. Larrabee, R. C. Bunt, S. D. Maupas, J. G. Muller, and C. J. Burrows. 2004. Mechanism of two-electron oxidation of deoxyguanosine 5 ''-monophosphate by a platinum(IV) complex. Journal of the American Chemical Society 126 (2):591-598.
    158. Chen., W. Y, M. S. Lin, P. S. Tasi, J. T. Liu, P. H. Lin, S. Yamamoto. 2007. Studies of the Interaction Mechanism between single strand and double strand DNA with Hydroxyapatite by Microcalorimetry and Isotherm Measurements. Colloids and Surfaces A:Physicochemical and Engineering Aspects 295(1-3):274-283.
    159. Acharya, P., P. Cheruku, S. Chatterjee, S. Acharya, and J. Chattopadhyaya. 2004. Measurement of nucleobase pK(a) values in model mononucleotides shows RNA-RNA duplexes to be more stable than DNA-DNA duplexes. Journal of the American Chemical Society 126 (9):2862-2869.
    160. Ito, Y., and H. Hasuda. 2004. Immobilization of DNAzyme as a thermostable biocatalyst. Biotechnology and Bioengineering 86 (1):72-77.
    161. Travascio, P., Y. F. Li, and D. Sen. 1998. DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chemistry & Biology 5 (9):505-517.
    162. Willner, I., B. Shlyahovsky, M. Zayats, and B. Willner. 2008. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chemical Society Reviews 37 (6):1153-1165.
    163. Li, T., B. L. Li, and S. J. Dong. 2007. Aptamer-based label-free method for hemin recognition and DNA assay by capillary electrophoresis with chemiluminescence detection. Analytical and Bioanalytical Chemistry 389 (3):887-893.
    164. Wang, D., and S. J. Lippard. 2005. Cellular processing of platinum anticancer drugs. Nature Reviews Drug Discovery 4 (4):307-320.
    165. Rajski, S. R., and R. M. Williams. 1998. DNA cross-linking agents as antitumor drugs. Chemical Reviews 98 (8):2723-2795.
    166. Jamieson, E. R., and S. J. Lippard. 1999. Structure, recognition, and processing of cisplatin-DNA adducts. Chemical Reviews 99 (9):2467-2498.
    167. Bancroft, D. P., C. A. Lepre, and S. J. Lippard. 1990. Pt-195 Nmr Kinetic and Mechanistic Studies of Cis-Diamminedichloroplatinum and Trans-Diamminedichloroplatinum(Ii) Binding to DNA. Journal of the American Chemical Society 112 (19):6860-6871.
    168. Sakamoto, F., E. Suzuki, and Y. Fujii. 2002. Novel approach for the effective determination of DNA scission site using the Sanger method. Journal of Biochemical and Biophysical Methods 52 (2):97-109.
    169. Convery, M. A., S. Rowsell, N. J. Stonehouse, A. D. Ellington, I. Hirao, J. B. Murray, D. S. Peabody, S. E. V. Phillips, and P. G. Stockley. 1998. Crystal structure of an RNA aptamer protein complex at 2.8 angstrom resolution. Nature Structural Biology 5 (2):133-139.
    170. Rowsell, S., N. J. Stonehouse, M. A. Convery, C. J. Adams, A. D. Ellington, I. Hirao, D. S. Peabody, P. G. Stockley, and S. E. V. Phillips. 1998. Crystal structures of a series of RNA aptamers complexed to the same protein target. Nature Structural Biology 5 (11):970-975.
    171. Kaushik, M., R. Kukreti, D. Grover, S. K. Brahmachari, and S. Kukreti. 2003. Hairpin-duplex equilibrium reflected in the A -> B transition in an undecamer quasi-palindrome present in the locus control region of the human beta-globin gene cluster. Nucleic Acids Research 31 (23):6904-6915.
    172. Hoshika, S., N. Minakawa, and A. Matsuda. 2004. Synthesis and physical and physiological properties of 4 ''-thioRNA: application to post-modification of RNA aptamer toward NF-kappa B. Nucleic Acids Research 32 (13):3815-3825.
    173. Bozza, M., R. D. Sheardy, E. Dilone, S. Scypinski, and M. Galazka. 2006. Characterization of the secondary structure and stability of an RNA aptamer that binds vascular endothelial growth factor. Biochemistry 45 (24):7639-7643.
    174. Yamauchi, T., D. Miyoshi, T. Kubodera, A. Nishimura, S. Nakai, and N. Sugimoto. 2005. Roles of Mg2+ in TPP-dependent riboswitch. Febs Letters 579 (12):2583-2588.
    175. Bishop, G. R., J. S. Ren, B. C. Polander, B. D. Jeanfreau, J. O. Trent, and J. B. Chaires. 2007. Energetic basis of molecular recognition in a DNA aptamer. Biophysical Chemistry 126 (1-3):165-175.

    QR CODE
    :::