| 研究生: |
黎寶福 Le Ba Phuoc |
|---|---|
| 論文名稱: | Numerical Analysis on Improving the Thickness Uniformity of Silicon Epitaxial Layer by APCVD Deposition |
| 指導教授: |
陳志臣
Chen, Jyh-Chen |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 側噴射器 、多入口板 、傾斜的反應爐天花板 、APCVD 、沉積控制 、計算流體力學 、傳熱 、質量傳遞 |
| 外文關鍵詞: | Side injector, multi-inlet plate, tilted ceiling, APCVD, deposition control, computational fluid dynamics, heat transfer, mass transfer |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體線寬的進一步減小,對矽晶圓上矽外延層的厚度均勻性提出了更高的要求。本研究旨在利用數值模擬研究側噴射器和多入口板配置在常壓化學氣相沉積反應器中的應用,以提高厚度均勻性。側噴射器的結果表明,當側噴射器速度足以引導來自側噴射器的流線接觸晶圓邊緣時,可以修改晶圓邊緣附近的沉積速率(GR)。可以透過增加側噴射器的氣體速度和TCS三氯矽烷質量分數來增加側噴射器處的氣體動量。增加的 TCS 質量分數進一步增強了晶圓邊緣區域的 GR。在沒有側注入器的情況下觀察到的由於晶圓邊緣的 GR 突然下降而導致的不均勻性可以透過側注入器和操作參數優化的組合來顯著增強。結果表明TCS反應邊界層從晶片的前緣到後緣的快速成長導致前緣附近的GR快速減少。此外,基座的旋轉由於黏滯力而引起 GR 的傾斜。這些因素導致晶圓上的 GR 不均勻。這些挑戰可以透過利用多入口反應器設計來解決,該設計具有精確定位的入口板和每個入口的最佳氣體速度。在垂直於氣流方向的相同位置保持相同的 GR 可提高厚度均勻性。此外,在適當的入口通道處使用較高的氣體速度可以減少來自晶圓前緣的 GR 的非線性,從而提高厚度均勻性。此外,透過採用傾斜的天花板,可以提高氣體在流向方向上的速度。在入口處天花板傾斜角度與氣體速度的最佳組合,也能改善矽外延層的均勻性。在本研究中,當使用多進氣口反應器、優化頂部形狀以及進氣速度時,矽外延層的厚度不均勻性從 55% 改善至 3%。
The further decrease in semiconductor nanometer line width demands higher evenness of the silicon epitaxial layer on the silicon wafer. This study uses two approaches to improve the evenness of the silicon epitaxial layer on the silicon wafer. The first approach improves the silicon epitaxial layer evenness in the wafer edge zone by using a side injector, while the second approach uses a multi-inlet plate configuration to improve the silicon epitaxial layer evenness in the wafer center zone. Both simulation results and experimental data of the side injector indicate that the growth rate (GR) of the silicon epitaxial layer near the wafer edge can be modified when the side injector momentum is sufficient to direct streamlines from the side injector to contact the wafer edge. The momentum of the gas at the side injector can be increased by increasing the gas flow speed and the trichlorosilane (TCS) mass fraction of the side injector. The momentum of the side injector governs the affected zone, while the TCS mass fraction of the side injector impacts the GR within the affected zone. An increased TCS mass fraction further enhances the GR at the wafer edge zone. Therefore, the unevenness of the silicon epitaxial layer due to a sudden drop in the GR at the wafer edge observed in the absence of a side injector can be markedly improved by the combination of a side injector and the optimization of operating parameters. The results of simulation agreed well with the experimental data in the side injector study.
In the multi-inlet study, the present simulation results demonstrate that the rapid growth of the TCS reaction boundary layer from the front edge to the rear edge of the wafer results in a rapid reduction in GR near the front edge. Furthermore, the rotation of the susceptor induces a tilt in the GR due to viscous forces. Rapid reduction in GR near the front edge and a tilt in the GR result in unevenness of the silicon epitaxial layer on the silicon wafer. These challenges can be resolved by utilizing a multi-inlet system design with precisely positioned inlet plates and optimum gas flow speeds for each inlet channel. Maintaining the same GRs at the same locations perpendicular to the streamwise direction can improve the silicon epitaxial layer evenness. In addition, using higher gas flow speed at appropriate inlet channels reduces nonlinearity in GR from the wafer front edge, therefore improving the silicon epitaxial layer evenness. Furthermore, increasing the gas flow speed in the streamwise direction can be achieved by employing a tilted ceiling. An optimal combination of ceiling tilt and gas flow speed at the inlet can also improve the evenness of the silicon epitaxial layer. In this study, the unevenness of the silicon epitaxial layer improved from 55% to 3% when the multi-inlet plate system, optimizing ceiling shape and gas flow speed at inlet are used.
[1] Wikipedia, Silicon, 2024, https://en.wikipedia.org/wiki/Silicon.
[2] H. Habuka, S. Fukaya, A. Sawada, T. Takeuchi, M. Aihara, Flatness deterioration of silicon epitaxial film formed in a horizontal single-wafer epitaxial reactor II, Japanese Journal of Applied Physics Part 1- Regular Papers Short Notes & Review Papers 41 (2002) 5692-5696.
[3] H. Habuka, Masatake Katayama, Manuba Shimada, Kikuo Okuyama, Nonlinear increase in silicon epitaxial growth rate in a SiHCl3-H2 system under atmospheric pressure, Journal of Crystal Growth 182 (1997) 352-362.
[4] F. Shimura, Semiconductor silicon crystal technology, first ed., Harcourt Brace Jovanovich, San Diego (1989).
[5] F.R. Faller, A. Hurrle, High-temperature CVD for crystalline-silicon thin-film solar cells, IEEE Transactions on Electron Devices 46 (1999) 2048-2054.
[6] H. Habuka, J. Suzuki, Y. Takai, H. Hirata, S.I. Mitani, Silicon epitaxial growth process using trichlorosilane gas in a single-wafer high-speed substrate rotation reactor, Journal of Crystal Growth 327 (2011) 1-5.
[7] M. Lapedus, Inspecting unpatterned wafers, Semiducductor Enginnering (2018), https://semiengineering.com/inspecting-unpatterned-wafers/.
[8] M. Tilli, M.P Krockel, M. Petzold, H. Theuss, T. Motooka, V. Lindroos, Handbook of silicon based MEMS materials and technologies, third ed., Matthew Deans, United Kingdom (2020).
[9] S. Jeon, H. Park, H.J. Oh, W.K. Kim, Computational modeling of a chemical vapor deposition reactor for epitaxial silicon formation, Science of Advanced Materials 8 (2016) 578-582.
[10] H. Habuka, Y. Aoyama, S. Akiyama, T. Otsuka, W.F. Qu, M. Shimada, K. Okuyama, Chemical process of silicon epitaxial growth in a SiHCl3-H2 system, Journal of Crystal Growth 207 (1999) 77-86.
[11] K. Miyazaki, A. Saito, H. Hanuka, In situ measurement for evaluating temperature change related to silicon film formation in a SiHCl3-H2 system, ECS Journal of Solid State Science and Technology 5 (2015) 16-20.
[12] A. Saito, A. Sakurai, H. Habuka, Increase in silicon film deposition rate in a SiHCl3-SiHx-H2 system, Journal of Crystal Growth 468 (2017) 204-207.
[13] A. Saito, K. Miyazaki, M. Matsui, H. Habuka, In-situ observation of chemical vapor deposition using SiHCl3 and BCl3 gases, Physica Status Solidi (c) 12 (2015) 953-957.
[14] S. Makino, M. Inagaki, K. Nakashima, T. Kozawa, N. Horinouchi, A simplified reaction model and numerical analysis for Si deposition from the SiHCl3-H2 system in vertical rotating disk reactors, Journal of Crystal Growth 454 (2016) 156-163.
[15] Z. Ramadan, I. T. Im, C. W. Park, Process optimization and modeling of the silicon growth in trichlorosilane-hydrogen gas mixture in a planetary CVD reactor, IEEE Transactions on Semiconductor Manufacturing 34 (2021) 1-8.
[16] K. F. Jensen, W. Kern, Thin film processes II, Eds. J. L. Vossen and W. Kern, Academic Press, New York (1991).
[17] H. Xiao, Introduction to semiconductor manufacturing technology, Society of Photo-Optical Instrumentation Engineers Publisher, Washington (2012).
[18] M. Huff, Process variations in microsystems manufacturing, Springer Publisher, Switzerland (2020).
[19] KBV Research, Global semiconductor wafer market by wafer size (6 inch, 8 inch, 12 inch, and others), by technology (packaging & assembly, wafer bumping, testing & inspection, and others), by product type (processor, memory, analog, and others), by end user (consumer electronics, automotive, industrial, telecommunications, and others), by regional outlook, industry analysis report and forecast, 2021-2027 (2021), https://www.kbvresearch.com/semiconductor-wafer-market/.
[20] D. S. Kumar, B. J. Kumar, H. M. Mahesh, Chapter 3 - Quantum Nanostructures (QDs): An Overview, Synthesis of Inorganic Nanomaterials, (2018), 59-88
[21] Wikipedia, Chemical Vapor Deposition (2024), https://en.wikipedia.org/wiki/Chemical_vapor_deposition.
[22] ASM International, Products and technology for advanced wafer processing, Analyst and Investor Technology Seminar (2012).
[23] M. Rice, A new equipment platform for a new era of chipmaking (2023), https://www.appliedmaterials.com/us/en/blog/blog-posts/a-new-equipment-platform-for-a-new-era-of-chipmaking.html.
[24] K. Irikura, M. Muroi, A. Yamada, M. Matsuo, H. Habuka, Y. Ishida, S.I. Ikeda, S. Hara, Advantages of a slim vertical gas channel at high SiHCl3 concentrations for atmospheric pressure silicon epitaxial growth, Materials Science in Semiconductor Processing 87 (2018) 13-18.
[25] I. Kao, C. Chung, Wafer manufacturing: shaping of single crystal silicon wafers, first ed, Wiley, United State (2021).
[26] H. J. Levinson, High-NA EUV lithography: current status and outlook for the future, Japaness Journal of Applied Physics 61 (2022) SD0803-1-SD0803-18.
[27] H. Lee, J. Lee, S. Kim, C. Lee, S. Han, M. Kim, W. Kwon, S.K. Park, S. Veeraraghavan, J. Kim, A. Awasthi, J. Byeon, D. Mueller, J. Sinha, Improvement of depth of focus control using wafer geometry, SPIE Advanced Lithography 9424 (2015) 942428-1-942428-6.
[28] M. Kunle, J. Baumgartl, T, Ackermann, Uniformity improvement for 200mm APCVD epitaxial Si film by retrofit of applied materials epi centura, SEMI Advanced Semiconductor Manufacturing Conference 25 (2014) 389-392.
[29] B. P. Le, W. J. Lin, J. C. Chen, C. Hu, C. C. Tu, L. C. Chen, Numerical and experimental investigation of the effect of side injectors on the deposition rate near the wafer edge during atmospheric pressure chemical vapor deposition, Materials Science in Semiconductor Processing 172 (2024) 108085.
[30] H. Habuka, T. Nagoya, M. Mayusumi, M. Katayama, M. Shimada, K. Okuyama, Model on transport phenomena and epitaxial growth of silicon thin film in SiHCl3-H2 system under atmospheric pressure, Journal of Crystal Growth 169 (1996) 61-72.
[31] S. Kommu, B. Khomami, High-volume single-wafer reactors for silicon epitaxy, Industrial & Engineering Chemistry Research 41 (2002) 732-743.
[32] H. Habuka, M. Katayama, M. Shimada, K. Okuyama, Numerical evaluation of silicon-thin film growth from SiHCl3-H2 gas-mixture in a horizontal chemical-vapor-deposition reactor, Japanese Journal of Applied Physics Part 1- Regular Papers Short Notes & Review Papers 33 (1994) 1977-1985.
[33] M. Fang, Y.Y. Xiong, X.Z Yuan, Y.W Liu, Numerical analysis of the chemical vapor deposition of polysilicon in a trichlorosilane and hydrogen system, Energy Procedia 61 (2014) 1987-1991.
[34] D. Angermeier, R. Monna, A. Slaoui, J. C Muller, Modeling and analysis of the silicon epitaxial growth with SiHCl3 in a horizontal rapid thermal chemical vapor deposition reactor, Journal of The Electrochemical Society 144 (1997) 3256-3261.
[35] A. G. Salinger, R.P. Pawlowski, J. N. Shadid, B.G.B. Waanders, Computational analysis and optimization of a chemical vapor deposition reactor with large-scale computing, Industrial & Engineering Chemistry Research 43 (2004) 4612-4623.
[36] S. Kommu, G.M. Wilson, and B. Khomami, A theoretical/experimental study of silicon epitaxy in horizontal single-wafer chemical vapor deposition reactors, Journal of The Electrochemical Society 147 (2000) 1538-1550.
[37] H. Habuka, S.I. Fukaya, A. Sawada, T. Takeuchi, M. Aihara, Formation mechanism of local thickness profile of silicon epitaxial film, Journal of Crystal Growth 266 (2004) 327-332.
[38] B. P. Le, J. C. Chen, C. Hu, W. J. Lin, C. C. Tu, L. C. Chen, Numerical analysis of the use of multiple inlet plates to improve the thickness uniformity of silicon epitaxial layers during atmospheric pressure chemical vapor deposition, Results in Engineering 24 (2024), 103688.
[39] H. Habuka, Flatness deterioration of Silicon epitaxial film formed using horizontal single-wafer epitaxial reactor, The Japan Society of Applied Physics 40 (2001) 6041-6044.
[40] Y. Zhou, Y. Hou, Z. Nie, G. Xie, W. Ma, Y. Dai, P. Ramachandran, Thermodynamic simulation of polycrystalline silicon chemical vapor deposition in Si-Cl-H system, Theoretical Foundations of Chemical Engineering 53 (2019) 1048-1056.
[41] B. P. Le, J. C. Chen, C. Hu, W. J. Lin, C. C. Tu, L. C. Chen, Numerical simulation of the effect of APCVD reactor tilted ceiling height on silicon epitaxial layer thickness uniformity, Crystals 15 (2025) 477.
[42] O. Garbrecht, Large eddy simulation of three-dimentional mixed convection on a vertical plate, RWTH Aachen University, Germany (2017).
[43] S. K. Lau, Z. Cong, M. T. Samir, Z. Ye, D. K. Carlzon, X. Li, E. A. Sanchez, S. Srinivasan, Epitaxial chamber with customizable flow injection (2014) WO 2014/066033 A1.
[44] B. Ramachandran, E. A. C. Sanchez, N. O. Myo, K. J. Bautista, H. S. Juneja, Z. Zhu, Epitaxial chamber with cross flow (2015) US 9,127,360 B2.
[45] E. K. Shono, V. K. Pandey, C. S. Olsen, K. Shah, H. Lo, T. K. Osborn, R. George, L. Hawrylchak, E. Hansen, Asymmetric injection for better wafer uniformity (2024) US 11,959,169 B2.
[46] M. Ma, J. Su, A. Demos, X. Lin, S. Kim, M. Barrlett, Multi-Port gas injection system and reactor system including same, US 11,053,591 B2 (2021).
[47] D. Wang, J. Lao, W. Xiao, H. Qu, J. Wang, G. Wang, J. Li, Theoretical adjustment of metalorganic chemical vapor deposition process parameters for high-quality gallium nitride epitaxial films, Physics of Fluids 35 (2023) 033306.
[48] J. Meng, Y. Jaluria, Numerical simulation of GaN growth in a metalorganic chemical vapor deposition process, Journal of Manufacturing Science and Engineering 135 (2013) 061013.
[49] C. Y. Shin, B. J. Baek, C. R. Lee, B. Pak, J. M. Yoon, K. S. Park, Numerical analysis for the growth of GaN layer in MOCVD reactor, Journal of Crystal Growth 247 (2003), 301-312.
[50] W. J. Lin, J. C. Chen, A numerical study of the effect of pulse duration on preventing particle generation during the AlN pulsed MOCVD process, Materials Science in Semiconductor Processing 148 (2022) 106816.
[51] W. J. Lin, J. C. Chen, Numerical study of growth rate and purge time in the AlN pulsed MOCVD process, Crystals 12 (2022) 1101.
[52] B. Yang, N. Yang, D. Zhao, F. Chen, X. Yuan, Y. Hou, G. Xie, Numerical simulation of a simplified reaction model for the growth of graphene via chemical vapor deposition in vertical rotating disk reactor, Coatings 13 (2023) 1184.
[53] S. M. He, Z. L. Lin, W. J. Lin, K. X. Xu, Y. H. Chen, J. C. Chen, C. Y. Su, Toward large-scale CVD graphene growth by enhancing reaction kinetics via an efficient interdiffusion mediator and mechanism study utilizing CFD simulations, Journal of the Taiwan Institute of Chemical Engineers 128 (2021) 400-408.
[54] Q. Li, J. Luo, Z. Li, M.H. Rummeli, L. Liu, Numerical investigation on the effect of gas-phase dynamics on graphene growth in chemical vapor deposition, Journal of Applied Physics 135 (2024) 125302.
[55] P. D. Neufeld, A. R. Janzen, R. A. Aziz, Empirical equations to calculate 16 of the transport collision integrals Ω(l,s)* for the Lennard-Jones (12-6) potential, The Journal of Chemical Physics 57 (1972) 1100-1102.
[56] S. Bretsznajder, Prediction of transport and other physical properties of fluids, first ed., Pergamon, United Kingdomn (1971).
[57] R.S. Brokaw, Predicting transport properties of dilute gases, Industrial & Engineering Chemistry Process Design and Development 8 (1969) 240-253.