| 研究生: |
陳旎娜 Ni-Na Chen |
|---|---|
| 論文名稱: |
利用H.264多幅畫面追蹤之視訊雜訊消除技術 Video noise reduction using H.264 multi-frame trajectory |
| 指導教授: |
張寶基
Pao-Chi Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 空間-時間域濾波器 、視訊雜訊消除 |
| 外文關鍵詞: | noise reduction, spatio-temporal filter, H.264 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在許多實際的視訊系統中,由於環境亮度不足造成感測器過熱、或感測器元件故障等因素,使得視訊在擷取、傳輸時可能會產生高斯、突波雜訊。這些雜訊會影響系統輸出的視訊品質及壓縮效率,因此雜訊消除是視訊處理中必要的一環。以往的濾波器若只考慮利用空間域上的資訊做雜訊衰減,會有殘影的情況發生;若只考慮利用時間域上訊號間的相關性來濾除雜訊,則無法消除短暫突發性的雜訊。我們提出利用H.264精準的移動補償及多幅參考畫面特性之空間-時間域濾波器。我們利用H.264多種區塊模式決策,一方面決定是否畫面受到雜訊干擾,另一方面也決定適當參數提供空間域濾波使用。在時間域方面,我們參考多張前畫面,根據移動軌跡找出可參考的像素,利用MSE評估時間域上像素間的相似性來排除雜訊。我們所提出的可調式的空間域濾波器及非線性的時間域濾波器,最後實驗數據顯示,可以有效達到消除高斯雜訊後PSNR提升0.83dB以上,位元率可減少24.46%以上;消除突波雜訊後PSNR可提升8.17dB以上,位元率減少84.85%以上,都有不錯的效果。
In video capture, noises such as Gaussian and impulse noise may exist because of insufficient luminance or defect of image sensors. Noise in video will seriously affect human visual perception and reduce compression efficiency. Therefore, noise reduction is a necessary part of video processing. Spatial filter and temporal filter were proposed to reduce noise in video in previous works. Both of them have disadvantages such as ghost effect of spatial filtering and blurring in temporal filtering. Consequently, we propose a spatio-temporal filtering scheme that utilizes motion compensation with multi-reference frames in H.264 to remove noise. It utilizes the variation of inter mode distributions to detect noise and determine the parameters for spatial filter. In the time domain, a reference pixel is selected from multi-reference frames according to the motion trajectory and MSE criterion. The proposed adaptive spatial filter and non-linear temporal filter can effectively remove Gaussian and impulse noises to improve video quality up to 0.83dB and 8.17dB in PSNR respectively. Meanwhile, it can also boost the compression efficiency by reducing the bitrate up to 84.85% in our experiments.
[1]T. Chen and H. R. Wu, “Adaptive impulse detection using center–weighted median filters,” IEEE Signal Process. Lett. , vol. 8, no.1, pp. 1–3, 2001.
[2]R. C. Gonzalez and R. E. Woods, Digital Image Processing. Second Edition, Prentice Hall, Upper Saddle River, New Jersey.
[3]M. Meguro, A. Taguchi, and N. Hamada, “Data-dependent weighted average filtering for image sequence restoration,” IEICE Trans. vol. J82-A, no.10, pp. 1623-1632, Oct. 1999.
[4]J. M. Boyce, “Noise reduction of image sequences using adaptive motion compensated frame averaging,” IEEE Int. Conf. Acoust. , Speech, Signal Process. , pp. 461-464, 1992.
[5]J. C. Brailean, R. P. Kleihorst, S. Efstratiadis, A. K. Katsaggelos, and R. L. Lagendijk, “Noise reduction filters for dynamic image sequences: a review,” Proceedings of the IEEE, vol. 83, no. 9, pp. 1272-1292, Sept. 1995.
[6]B. C. Song and K. W. Chun, “Motion-compensated temporal pre-filtering for noise reduction in a video encoder,” Proceedings of the 2004 IEEE International Conference on Image Processing, vol. 2, pp. 1221-1224, Oct. 2004.
[7]M. Saeidi, S.A. Motamedi, A. Behrad, B. Saeidi, and R. Saeidi, “Noise reduction of consecutive images using a new adaptive weighted averaging filter,” IEEE Workshop on Signal Processing Systems Design and Implementation, pp. 455- 460, Nov. 2005.
[8]D. H. Kim, R. H. Park, and S. Yang, “Noise reduction of image sequences using H.264/AVC variable block-size motion compensation,” International Conference on Consumer Electronics, pp. 387-388, Jan. 2006.
[9]K. Miyata and A. Taguchi, “Spatio-temporal separable data-dependent weighted average filtering for restoration of the image sequences,” IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. IV-3696-IV-3699, 2002.
[10]V. Zlokolica, W. Philips, and D. Van De Ville, “Robust non-linear filtering for video processing,” 14th International Conference on Digital Signal Processing, vol. 2, pp. 571-574, July, 2002.
[11]吳明坤, 基於時空濾波處理之有效視訊雜訊衰減之研究, 碩士論文, 高雄應用科技大學, 2005.
[12]T. Wiegand, G. J. Sullian, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. Circuits System Video Technology, vol. 13, pp. 560-576, July 2003.
[13]“Final committee draft: Editor’s proposed revisions,” in Joint Video Team(JVT) of ISO/IEC MPEG and ITU-T VCEG, T. Wiegand, Ed., Feb.2003,JVT-F100.
[14]T. Stockhammer, M. Hannuksela, and T. Wiegand, “H.264/AVC in wireless environments,” IEEE Trans. Circuits System Video Technology, vol.13, pp. 657-673, July 2003.
[15]S. Wenger, “H.264/AVC over IP,” IEEE Trans. Circuits System Video Technology, vol. 13, pp. 645-656, July 2003.
[16]R. C. Hardie and C. G. Boncelet, “LUM filters:a class of rank-order-based filters for smoothing and sharpening,” IEEE Trans. Signal. Processing .vol. 41, no. 3, pp. 1064-1076, March 1993.
[17]B. C. Song and K. W. Chun. “Motion-compensated noise estimation for efficient pre-filtering in a video encoder,” IEEE International Conference on Image Processing, vol. 2, pp. 211-214, 2003.
[18]S. D. Kim and J. B. Ra, “Efficient DCT-domain pre-filtering inside a video encoder,” SPIE Conf. Visual Communication and Image Processing, vol. 4067, pp. 1579-1588, June 2000.
[19]S.-W. Lee, V. Maik, J. Jang, J. Shin, and J. Paik. “Noise adaptive spatio-temporal filter for real-time noise removal in low light level images,” IEEE Tran. Consumer Electronics, vol. 51, no. 4, pp. 648-653, May 2005.