跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡惟捷
Wei-Chieh Tsai
論文名稱: 鈦酸鋇奈米線/聚(偏氟乙烯-三氟乙烯)奈米發電複合纖維
指導教授: 蔣孝澈
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 86
中文關鍵詞: 鈦酸鋇靜電紡絲奈米纖維複合
外文關鍵詞: piezolectric effect
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主題是利用電紡絲技術製備具有壓電性質之鈦酸鋇奈米線/高分子奈米複合纖維。首先利用兩段式水熱法合成鈦酸鋇。第一階段是以鐵氟龍密封之不鏽鋼水熱罐製備鈦酸奈米線,主要挑戰是找出適當之反應條件。第二階段則須在維持相同之一維形貌下,將鈦酸轉化為鈦酸鋇奈米線。我們發現只需以90oC加熱一小時即可達成。將獲得之鈦酸鋇奈米線以不同之比例,分散於聚(偏氟乙烯-三氟乙烯)(P(VDF-TrFE))的溶液中,並透過調整DMF/丙酮溶劑之比例,得到不同固含量之電紡前驅溶液。然後改變極化電場強度及前趨溶液流速,以能電紡出不同直徑與形貌的奈米複合纖維。在金屬電極基板上收集到的複合纖維膜,需要做統一規格的裁切,並黏貼上電極,再以PDMS封裝,以獲得曲折後可以回復且發電之複合膜。我們主要是要測試添加不同量之鈦酸鋇對P(VDF-TrFE)高分子晶相以及發電能力之影響。最後發現,添加越多鈦酸鋇奈米線者,曲折後可以產生越高的電壓。我們最多可以添加16% 體積分率之鈦酸鋇奈米線。所獲得之複合纖維膜發電效果為純P(VDF-TrFE)纖維膜四倍之多。


    We have successfully fabricated a flexible nanofibrous mat of piezoelectric composite through the electrospinning of a P(VDF-TrFE) and BaTiO3 (BT) nanowire mixture. This mat forms a cost-effective and eco-friendly (lead-free) nanogenerator after encapsulated with PDMS. The P(VDF-TrFE) (poly(vinylidene fluoride trifluoroethylene) is known for its piezoelectric property and is employed as the matrix for our composite. The BaTiO3 nanowire was produced from the reaction of Ba(OH) with the titanate nanowire, which was synthesized through the hydrothermal treatment of TiO2 (Degussa P25) in 10M NaOH solution and HCl wash afterward. The BT material obtained have been characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Raman Spectroscopy. The results show that the BT material is crystalline with tetragonal phase and has a one-dimensional morphology with average diameter of 110.6 nm and length of several micrometers.
    The viscous composite formed by mixing BT and P(VDF-TrFE) in DMF/Acetone was electrospun into nanofibers and collected as a mat. The amount of BT nanowire in the composite could be as high as 16 vol%. The composite mat was cut into specific shape and size then encapsulated with PDMS after attached the electrodes. The open-circuit Voltage (Voc) of the nanogenerator assembled was evaluated under reciprocated bending. The composite nanogenerator generated more than four times the open-circuit voltage compared to that made from pure P(VDF-TrFE) nanofibers.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章、 緒論 1 1-1 研究背景與動機 1 第二章、 文獻回顧 2 2-1 壓電效應 2 2-2 靜電紡絲 5 2-2-1 電紡原理 5 2-2-2 溶液參數 6 2-2-3 電紡絲製程參數 7 2-3 製備奈米一維鈦酸鋇 8 2-3-1 電紡絲法 9 2-3-2 陽極氧化法 11 2-3-3 水熱法 12 2-4 奈米纖維 19 2-4-1 純高分子奈米纖維 19 2-4-2 鈦酸鋇/高分子複合奈米纖維膜 21 2-5 實驗目的 23 第三章、 實驗步驟與方法 24 3-1 實驗架構 24 3-2 實驗藥品 25 3-3 鈦酸鋇奈米線之合成 26 3-3-1 第一階段水熱法 26 3-3-2 第二階段水熱法 26 3-4 電紡絲溶液配製 27 3-5 靜電紡絲 27 3-6 PDMS封裝 28 3-7 壓電效果測試 29 3-8 分析儀器 30 3-8-1 界達電位分析儀 (Zeta potential) 30 3-8-2 熱重損失儀 (TGA) 30 3-8-3 X-ray 繞射儀 (XRD) 31 3-8-4 傅立葉紅外線光譜儀 (FTIR) 31 3-8-5 拉曼光譜儀 (Raman) 31 3-8-6 掃描式電子顯微鏡 (SEM) 32 3-8-7 穿透式電子顯微鏡 (TEM) 32 第四章、 實驗結果與討論 33 4-1 兩段式水熱法合成鈦酸鋇 33 4-1-1 水熱法製備一維鈦酸 (One Dimensional Titanate ) 34 4-1-1-1 水熱溫度與時間之選擇 34 4-1-1-2 一維鈦酸鈉之酸化條件 37 4-1-1-3 一維鈦酸之鑑定 40 4-1-2 鈦酸奈米線水熱轉化成鈦酸鋇奈米線 41 4-1-2-1 以不同水量調配反應溶液 42 4-1-2-2 轉化反應時間之影響 45 4-1-2-3 鈦酸鋇奈米線之鑑定 48 4-2 電紡絲參數對於纖維形貌之影響 52 4-2-1 製程參數對纖維影響 53 4-2-2 溶液參數對纖維影響 55 4-2-3 不同配方對纖維形貌之影響 57 4-3 可撓曲複合壓電膜 61 4-3-1 不同配方對高分子晶相之影響 61 4-3-2 不同配方對壓電效果之影響 64 4-3-3 與文獻之比較 67 第五章、 結論與未來展望 68 參考文獻 70

    1. Wang, Z. L. &Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays.
    2. NREL. https://www.materialsnet.com.tw/DocView.aspx?id=25503.
    3. 黃原裕,蔣孝澈. Factors on Low Temperature Synthesis of fine BaTiO3 by Conventional and Microwave heating.
    4. 池田拓郎 1997 基本壓電材料學.
    5. Cheng, L.-Q. &Li, J.-F. A review on one dimensional perovskite nanocrystals for piezoelectric applications. J. Mater. 2, 25–36 (2016).
    6. 吳朗,電子材料,1997.
    7. N. Tucker, J. J. Stanger, M. P. Staiger, H. Razzaq, K. H. The History of the Science and Technology of Electrospinning from 1600 to 1995. J. Eng. Fiber. Fabr. 63–73 (2012).
    8. L.F. Nascimento, M., S. Araujo, E., R. Cordeiro, E., H.P. de Oliveira, A. &P. de Oliveira, H. A Literature Investigation about Electrospinning and Nanofibers: Historical Trends, Current Status and Future Challenges. Recent Pat. Nanotechnol. (2015). doi:10.2174/187221050902150819151532
    9. Szentivanyi, A. L., Zernetsch, H., Menzel, H. &Glasmacher, B. A review of developments in electrospinning technology: New opportunities for the design of artificial tissue structures. International Journal of Artificial Organs (2011). doi:10.5301/ijao.5000062
    10. Koyal Garg and Gary L. Bowlin. Electrospinning jets and nanofibrous structures. Biomicrofluidcs 5, 13403 (2011).
    11. Reneker, D. H., Yarin, A. L., Fong, H. &Koombhongse, S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. (2000). doi:10.1063/1.373532
    12. 維基百科,靜電紡絲.
    13. Haghi, A. K. &Akbari, M. Trends in electrospinning of natural nanofibers. in Physica Status Solidi (A) Applications and Materials Science (2007). doi:10.1002/pssa.200675301
    14. Yang, Q. et al. Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. J. Polym. Sci. Part B Polym. Phys. (2004). doi:10.1002/polb.20222
    15. Zheng, J. Y. et al. The effect of surfactants on the diameter and morphology of electrospun ultrafine nanofiber. J. Nanomater. (2014). doi:10.1155/2014/689298
    16. Li, Z. &Wang, C. Effects of Working Parameters on Electrospinning. in (2013). doi:10.1007/978-3-642-36427-3_2
    17. H. Fong, I. Chun, D. H. R. Beaded nanofibers formed during electrospinning. Polym. 40, 4585–4592 (1999).
    18. Huan, S. et al. Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers. Materials (Basel). (2015). doi:10.3390/ma8052718
    19. Lyons, J., Li, C. &Ko, F. Melt-electrospinning part I: Processing parameters and geometric properties. Polymer (Guildf). (2004). doi:10.1016/j.polymer.2004.08.071
    20. Yang, Y., Jia, Z., Li, Q. &Guan, Z. Experimental investigation of the governing parameters in the electrospinning of polyethylene oxide solution. in IEEE Transactions on Dielectrics and Electrical Insulation (2006). doi:10.1109/TDEI.2006.1657971
    21. Arayanarakul, K., Choktaweesap, N., Aht-ong, D., Meechaisue, C. &Supaphol, P. Effects of poly(ethylene glycol), inorganic salt, sodium dodecyl sulfate, and solvent system on electrospinning of poly(ethylene oxide). Macromol. Mater. Eng. (2006). doi:10.1002/mame.200500419
    22. Uyar, T. &Besenbacher, F. Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. Polymer (Guildf). (2008). doi:10.1016/j.polymer.2008.09.025
    23. Mit-Uppatham, C., Nithitanakul, M. &Supaphol, P. Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. doi:10.1002/macp.200400225
    24. Huang, C. et al. Electrospun polymer nanofibres with small diameters. Nanotechnology (2006). doi:10.1088/0957-4484/17/6/004
    25. Ding, W. et al. Manipulated electrospun PVA nanofibers with inexpensive salts. Macromol. Mater. Eng. (2010). doi:10.1002/mame.201000188
    26. Park, J. Y., Lee, I. H. &Bea, G. N. Optimization of the electrospinning conditions for preparation of nanofibers from polyvinylacetate (PVAc) in ethanol solvent. J. Ind. Eng. Chem. (2008). doi:10.1016/j.jiec.2008.03.006
    27. Reneker, D. H. &Yarin, A. L. Electrospinning jets and polymer nanofibers. Polymer (2008). doi:10.1016/j.polymer.2008.02.002
    28. Pillay, V. et al. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials (2013). doi:10.1155/2013/789289
    29. Mazoochi, T., Hamadanian, M., Ahmadi, M. &Jabbari, V. Investigation on the morphological characteristics of nanofiberous membrane as electrospun in the different processing parameters. Int. J. Ind. Chem. (2012). doi:10.1186/2228-5547-3-2
    30. Baek, C. et al. Enhanced output performance of a lead-free nanocomposite generator using BaTiO3nanoparticles and nanowires filler. Appl. Surf. Sci. (2018). doi:10.1016/j.apsusc.2017.06.109
    31. Liang, L. Y., Kang, X. L., Sang, Y. H. &Liu, H. One-Dimensional Ferroelectric Nanostructures: Synthesis, Properties, and Applications. Adv. Sci. 3, 21 (2016).
    32. Li, X., Sun, M., Wei, X., Shan, C. &Chen, Q. D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization. (2018). doi:10.3390/nano8040188
    33. Yoko, T., Kamiya, K. &Tanaka, K. Preparation of multiple oxide BaTiO3 fibres by the sol-gel method. J. Mater. Sci. 25, 3922–3929 (1990).
    34. Baji, A., Mai, Y. W., Li, Q. &Liu, Y. Nanoscale investigation of ferroelectric properties in electrospun barium titanate/polyvinylidene fluoride composite fibers using piezoresponse force microscopy. Compos. Sci. Technol. 71, 1435–1440 (2011).
    35. Zhang, X., Ma, Y., Zhao, C. &Yang, W. High dielectric constant and low dielectric loss hybrid nanocomposites fabricated with ferroelectric polymer matrix and BaTiO3 nanofibers modified with perfluoroalkylsilane. Appl. Surf. Sci. 305, 531–538 (2014).
    36. Liu, S., Xue, S., Zhang, W. &Zhai, J. Enhanced dielectric and energy storage density induced by surface-modi fi ed BaTiO 3 nano fi bers in poly ( vinylidene fl uoride ) nanocomposites. 40, 15633–15640 (2014).
    37. Yan, J. &Jeong, Y. G. Roles of carbon nanotube and BaTiO 3 nanofiber in the electrical, dielectric and piezoelectric properties of flexible nanocomposite generators. Compos. Sci. Technol. 144, 1–10 (2017).
    38. Padture, N. P. &Wei, X. Hydrothermal synthesis of thin films of barium titanate ceramic nano-tubes at 200°C. J. Am. Ceram. Soc. (2003). doi:10.1111/j.1151-2916.2003.tb03636.x
    39. Wang, X., Chen, L., Zhao, J., Jin, L. &Li, L. Hydrothermal synthesis of thin films of barium titanate nanotube arrays. in Integrated Ferroelectrics (2008). doi:10.1080/10584580802107882
    40. Muñoz-Tabares, J. A. et al. Nanostructural evolution of one-dimensional BaTiO 3 structures by hydrothermal conversion of vertically aligned TiO 2 nanotubes. Nanoscale (2016). doi:10.1039/C5NR07283B
    41. Tsege, E. L. et al. A flexible lead-free piezoelectric nanogenerator based on vertically aligned BaTiO 3 nanotube arrays on a Ti-mesh substrate. RSC Adv. (2016). doi:10.1039/C6RA13482C
    42. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. &Niihara, K. Formation of Titanium Oxide Nanotube.
    43. Bao, N. Z., Shen, L. M., Srinivasan, G., Yanagisawa, K. &Gupta, A. Shape-controlled monocrystalline ferroelectric barium titanate nanostructures: From nanotubes and nanowires to ordered nanostructures. J. Phys. Chem. C 112, 8634–8642 (2008).
    44. Li, Y. et al. Titanate Nanofiber Reactivity: Fabrication of MTiO3 (M = Ca, Sr, and Ba) Perovskite Oxides. J. Phys. Chem. C 113, 4386–4394 (2009).
    45. Zhu, Y.-F., Zhang, L., Natsuki, T., Fu, Y.-Q. &Ni, Q.-Q. Facile Synthesis of BaTiO 3 Nanotubes and Their Microwave Absorption Properties. ACS Appl. Mater. Interfaces 4, 2101–2106 (2012).
    46. Tang, H., Zhou, Z. &Sodano, H. A. Relationship between BaTiO3 Nanowire Aspect Ratio and the Dielectric Permittivity of Nanocomposites. ACS Appl. Mater. Interfaces 6, 5450–5455 (2014).
    47. Koka, A., Zhou, Z., Tang, H. X. &Sodano, H. A. Controlled synthesis of ultra-long vertically aligned BaTiO3 nanowire arrays for sensing and energy harvesting applications. Nanotechnology 25, 10 (2014).
    48. Lin, Z. H. et al. BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators. J Phys Chem Lett 3, 3599–3604 (2012).
    49. Dhakras, D. &Ogale, S. High-Performance Organic-Inorganic Hybrid Piezo-Nanogenerator via Interface Enhanced Polarization Effects for Self-Powered Electronic Systems. Adv. Mater. Interfaces 3, 9 (2016).
    50. Lee, M. et al. A hybrid piezoelectric structure for wearable nanogenerators. Adv. Mater. (2012). doi:10.1002/adma.201200150
    51. Fang, J., Wang, X. &Lin, T. Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J. Mater. Chem. (2011). doi:10.1039/c1jm11445j
    52. Vazquez, B., Vasquez, H. &Lozano, K. Preparation and characterization of polyvinylidene fluoride nanofibrous membranes by forcespinningTM. Polym. Eng. Sci. (2012). doi:10.1002/pen.23169
    53. Gheibi, A., Bagherzadeh, R., Merati, A. A. &Latifi, M. Electrical power generation from piezoelectric electrospun nanofibers membranes: electrospinning parameters optimization and effect of membranes thickness on output electrical voltage. J. Polym. Res. (2014). doi:10.1007/s10965-014-0571-8
    54. Liu, X., Ma, J., Wu, X., Lin, L. &Wang, X. Polymeric Nanofibers with Ultrahigh Piezoelectricity via Self-Orientation of Nanocrystals. ACS Nano 11, 1901–1910 (2017).
    55. Corral-Flores, V. et al. Preparation of Electrospun Barium Titanate – Polyvinylidene Fluoride Piezoelectric Membranes. Mater. Sci. Forum (2010). doi:10.4028/www.scientific.net/MSF.644.33
    56. Chanmal, C. V. &Jog, J. P. Electrospun PVDF/BaTiO3 nanocomposites: Polymorphism and thermal emissivity studies. Int. J. Plast. Technol. (2011). doi:10.1007/s12588-011-9001-5
    57. Siddiqui, S. et al. A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers. embedded in an elastomer under high loading for a self-powered sensor system. Nano Energy 30, 434–442 (2016).
    58. Lu, X., Qu, H. &Skorobogatiy, M. Piezoelectric microstructured fibers via drawing of multimaterial preforms. Sci. Rep. (2017). doi:10.1038/s41598-017-01738-9
    59. Joshi, U. A., Yoon, S., Balk, S. &Lee, J. S. Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: A structural investigation. J. Phys. Chem. B 110, 12249–12256 (2006).
    60. Xie, B. et al. Mechanical force-driven growth of elongated BaTiO3 lead-free ferroelectric nanowires. Ceram. Int. 43, 2969–2973 (2017).
    61. Wang, Y., Du, G., Liu, H. &王彦敏表征及形成机理探讨. Preparation, Characterization and Formation Mechanism of TiO 2 Nanobelts.
    62. Bavykin, D.V., Friedrich, J. M. &Walsh, F. C. Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. (2006). doi:10.1002/adma.200502696
    63. Rorvik, P. M., Grande, T. &Einarsrud, M. A. One-Dimensional Nanostructures of Ferroelectric Perovskites. Adv. Mater. 23, 4007–4034 (2011).
    64. Gregorio R. Cestari M. Effed of Crystallization Temperature on the Crystalline Phase Content and Morphology of Poly (vinylidene Fluoride). Polymer (Guildf). 32, 859–870 (1994).
    65. Park, K.-I. et al. Lead-free BaTiO 3 nanowires-based flexible nanocomposite generator. Nanoscale 6, 8962 (2014).
    66. Mao, Y., Banerjee, S. &Wong, S. S. Hydrothermal synthesis of perovskite nanotubes. Chem. Commun. 408–409 (2003). doi:10.1039/B210633G
    67. Choi, W., Choi, K., Yang, G., Kim, J. C. &Yu, C. Improving piezoelectric performance of lead-free polymer composites with high aspect ratio BaTiO3 nanowires. Polym. Test. 53, 143–148 (2016).
    68. Maxim, F., Ferreira, P., Vilarinho, P. M. &Reaney, I. Hydrothermal Synthesis and Crystal Growth Studies of BaTiO3 Using Ti Nanotube Precursors. Cryst. Growth Des. 8, 3309–3315 (2008).

    QR CODE
    :::