跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭雅云
Ya-Yun Cheng
論文名稱: 以分子動力學模擬鋁薄膜成長
A MD simulation of aluminum thin film growth
指導教授: 李正中
Cheng-Chung Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 92
語文別: 中文
論文頁數: 51
中文關鍵詞: 分子動力學
外文關鍵詞: MD, aluminum
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    由以往的實驗經驗中發現,薄膜的膜質結構與表面粗糙度與入射源有相當大的關聯,例如入射原子的動能及入射角度。基板的溫度也會影響膜質的結構。本文以分子動力學為基礎架構一個三維的模擬系統,以原子嵌入法作為鋁原子間的勢能函數,模擬鋁薄膜成長時的暫態行為及薄膜膜層中原子堆疊的幾何結構,藉由改變環境參數,如入射粒子動能、入射角度及基板溫度觀察薄膜的生長過程,希望藉由模擬的結果探討以上三種環境因素對膜質結構的影響。進而改善製鍍薄膜的技術,使得製鍍的成品性質更加良好。


    Abstract
    The morphology and microstructure of metallic thin films synthesized by physical vapor deposition are known to be sensitive functions of the incident flux, its angular distribution and kinetic energy as well as the substrate temperature. Using an embedded atom method to represent the atomic interactions, three-dimensional molecular dynamics simulations have been conducted to identify the role of these variables upon surface morphology involution during Aluminum deposition. The results reveal increasing incident atoms’ energy in the range 0.1-3.0ev range significantly reduce vacancy formation. Increases incident angle will increase vacancy formation. During substrate temperature from 300K to 500K, increasing the temperature reduces surface roughness. However, when substrate temperature larger than 500 K, vacancy formation by hillock. Using Ta atom as a surfactant to reduce surface roughness have been simulated.

    目 錄 英文摘要 Ⅰ 中文摘要 Ⅱ 目錄 Ⅲ 圖目錄 Ⅵ 表目錄 Ⅶ 第一章 緒論 1 第二章 分子動力學理論 6 2.1 模擬尺寸大小與所適用的方法 6 2.2 原子嵌入法 8 2.3 演算法 12 2.4 邊界條件 13 2.4.1 混合型邊界……………………………………………13 2.4.2 熱邊界…………………………………………………16 第三章 分子動力學模型 18 3.1 基板的設定 18 3.2 入射粒子的設定 19 3.3 程式運算的流程圖 20 3.4 模擬系統平台 21 第四章 模擬結果與分析 22 4.1 入射粒子動能對薄膜品質的影響 23 4.2 入射角度對膜質的影響 27 4.3 基板溫度對薄膜結構的影響 32 4.3-1鋁薄膜與基板溫度的關係 32 4.3-2添加鉭原子的鋁薄膜 39 第五章 結論 45 附錄 47 參考文獻 49

    參考文獻
    [1] 李正中, “薄膜光學與鍍膜技術”,藝軒圖書出版社,第三 版,2002年。
    [2] E. Bauer, Z. Kristallogr, Thin Solid Film,110, 372(1958).
    [3] E. Bauer, H. Hoppa, Thin Solid Film,12, 167(1972).
    [4] M. Schneider, A. Rahman and Ivan K. Schuller, Phys. Rev. Let. 55(6),604(1985).
    [5]J. W. Evens, D. E. Sanders ,and P. A. Thiel , Phys. Rev. B 41(8),5410-5413 (1990).
    [6]C. M. Gilmore and J. A, Sprague, Phys. Rev. B 44 (16),8950(1991).
    [7]L. Dong, R. W. Smith, J. App. Phys. 80(10) ,5682(1996).
    [8]L. Rongwu, Phys. Rev. B 53(7),4156(1996).
    [9] X. W. ZHOU, R. A. JOHNSON and H. N. G. Wadley, Acta mater. 45(4),1513(1997).
    [10] S.P. Ju, J. App. Phys. 89(12),7825(2001).
    [11] C. M. Gilmore, Thin Solid Films, 419,18(2002)
    [12] D. Raabe, Computational materials science:the simulation of materials microstructures and properties (Wiley:Weinheim, New York,1998).
    [13] A. RAHMAN, phys. Rev.,136(2A), 405(1964).
    [14] M. S. Daw and M.I. Baskes , Phys. Rev B 29 ,6443(1984) .
    [15] F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262(1985).
    [16] H. N. G. Wadley, X. Zhou and R. A. Johnson, Mat.Res.Soc.Symp.Proc.,672 ,O4.1.1(2001).
    [17] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, J. Chem. Phys. 76,637(1982).
    [18] University of Virginia, Modeling in Materials Science
    handout and lecture notes.(2003)
    [19] M. P. ALLEN and D.J. TILDESLEY, Computer Simulation of Liquids (Clarendon Press:Oxford,1990,1987)
    [20] D. C. RAPAPORT, The art of molecular dynamics simulation
    [21] J. M. HAILE, Molecular dynamics simulation elementary method(Wiley:Weinheim, New York,1997).
    [22] D. Frenkel and B.Smith,Understanding molecular simulation from algorithms to application,chap 6(Academic Press:San Diego,1996).
    [23] X. W. Zhou and H. G. Wadley, J. App. Phys. 42301(1998).
    [24] Kittel, Introduction to solid state physics ,chapter (Wiley:Weinheim, New York,2002).
    [25] T. Onishi, E. Iwamura, Thin Solid Films, 340 , 306(1999)
    [26] R. A. Johnson, Phys. Rev. B 39, 12554(1989).
    [27] E. Iwamura, T. Onishi and K. Yoshikawa, Thin Solid Films, 270 ,450(1995).

    QR CODE
    :::