| 研究生: |
林玫劭 Mei-shao Lin |
|---|---|
| 論文名稱: |
矩陣值勢能上的sofic測度 Sofic Measure on the Matrix-Valued Potential |
| 指導教授: |
許正雄
Cheng-hsiung Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 26 |
| 中文關鍵詞: | sofic shift 空間 、平衡測度 、維度的譜分析 、矩陣值勢能 、sofic 測度 |
| 外文關鍵詞: | sofic measure, matrix-valued potential, sofic shift space, equilibrium measure, dimension spectrum |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文研究矩陣值勢能在sofic shift 空間上相對應的平衡測度。用本篇論文所造出來的平衡測度,可以得到在sofic shift 空間上維度的譜分析的結果。最重要的是,我們提供一個在sofic shift 空間上,測度$
u$是嚴格的sofic 測度的例子。
This thesis studies equilibrium measures that correspond to the matrix-valued potential on a sofic shift space. With the construction, the analysis
of dimension spectrum is then available. Most important of all, there is an example shows that $
u$ is a strict sofic measure.
[1] D. J. Feng. Lyapunov exponents for products of matrices and multifractal analysis. part i: Positive matrices. Israel J. Math., 138:353–376, 2003.
[2] D. J. Feng and K. S. Lau. The pressure function for products of non-negative matrices. Math. Res. Lett., 9:363–378, 2002.
[3] R. W. Kenyon and Y. Peres. Hausdorff dimension of affine-invariant sets. Israel J. Math., 94:157–178, 1996.
[4] T. J. Chen. Multi-fractal analysis for sofic shift. preprint.
[5] M. Boyle and Petersen. Hidden markov processes in the context of symbolic dynamics. preprint.
[6] P. Walters. An introduction to ergodic theory. Springer-Verlag Berlin Heidelberg New York, 1982. 1